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Concurrency Parallelism
Competitive Cooperative

vs.



Parallelism:

Use multiple resources to  
accomplish a goal faster.









Single-core is tapped out (mostly)





Sum prime numbers in a vector

fn main() { 
  let vec: Vec<i64> = (0..100000).collect(); 

  // Imperative version 
  let mut sum: i64 = 0; 
  for i in vec.iter() { 
    if is_prime(i) { 
      sum += i; 
    } 
  } 

  // Functional version 
  let sum: i64 = vec.iter().filter(is_prime).sum(); 

  println!("Sum: {}", sum); 
}



use std::{thread, sync::Arc}; 
const NUM_WORKERS: usize = 8; 

fn main() { 
  let vec: Arc<Vec<i64>> = Arc::new((0..100000).collect()); 

  let chunk_size: usize = vec.len() / NUM_WORKERS; 

  let handles: Vec<thread::JoinHandle<i64>> = 
    (0..NUM_WORKERS).map(|i| { 
      let vec_ref = vec.clone(); 
      thread::spawn(move || { 
        let range = (i * chunk_size) .. ((i + 1) * chunk_size); 
        vec_ref[range].iter().filter(is_prime).sum() 
      }) 
    }).collect(); 

  let mut final_sum = 0; 
  for handle in handles { 
    final_sum += handle.join().unwrap(); 
  } 

  println!("Sum: {}", final_sum); 
} 

2. Assignment

3. Orchestration

1. Decomposition: K chunks

4. Mapping

Sum prime numbers in a vector in parallel



How can we achieve the same effect 
without all the extra code?



Idea #1: use same language, and try to 
find parallelism

  let mut sum: i64 = 0; 
  for i in 0..100000 { 
    if is_prime(i) { 
      sum += i; 
    } 
  }

Compiler Magic

let handles: = 
 (0..NUM_WORKERS).map(|i| { 
  let vec_ref = vec.clone(); 
  thread::spawn(move || {  
    .. 
  }) 
 }).collect(); 



Register allocation with graph coloring

Frank Pfenning, CMU 15-411



Polyhedral analysis for auto-parallelization

Akihiro Hayashi and Jun Shirako, “Introduction to Polyhedral Compilation” 2016



For a long time most of the Intel compiler team denied that anything more than 
their auto-vectorizer was needed to take care of vector unit utilization. We quickly 
fell into a cycle:

• They’d inform the graphics folks that they’d improved their auto-vectorizer in 

response to our requests and that it did everything we had asked for.

• We’d try it and find that though it was better, boy was it easy to write code that 

wasn’t actually compiled to vector code—it’d fail unpredictably.

• We’d give them failing cases, a few months would would pass and they’d 

inform us that the latest version solved the problem.

It didn’t take much to fall off the vectorization path. They tried to patch things up at 
first, but eventually came up with #pragma simd, which would disable the “is it 
safe to vectorize this” checks in the auto-vectorizer and vectorize the following loop 
no matter what.

Matt Pharr, “The story of ispc: origins (part 1)” 2018

“Autovectorization is not a programming model”



Idea #2: restrict the language to make 
parallelism implicit



use rayon::prelude::*; 

fn main() { 
  let vec: Vec<i64> = (0..100000).collect(); 
  let sum: i64 = vec.par_iter().filter(is_prime).sum(); 
  println!("Sum: {}", sum); 
} 

Rayon library in Rust



Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.”  NSDI’12

Canonical list processing operations



Theoretical parallelism is well-understood

Umut Acar and Guy Blelloch. “Algorithms: Parallel and Sequential.” 2019



Hardest part of parallelism isn’t 
expressing parallelism

use rayon::prelude::*; 

fn main() { 
  let vec: Vec<i64> = (0..100000).collect(); 
  let sum: i64 = vec.par_iter().filter(is_prime).sum(); 
  println!("Sum: {}", sum); 
} 

Work imbalance!

vec.par_iter().filter(|n| is_prime(n)).shuffle().sum();

Redistribute work evenly



Scheduling parallelism for image 
processing kernel in Halide



Blurring an image in C++

Ragan-Kelley et al. “Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines.” SIGGRAPH 2012



Blurring an image quickly in C++



For image processing, the global organization of execution and storage is 
critical. Image processing pipelines are both wide and deep: they consist of 
many data-parallel stages that benefit hugely from parallel execution across 
pixels, but stages are often memory bandwidth limited—they do little work per 
load and store. 


Gains in speed therefore come not just from optimizing the inner loops, but 
also from global program transformations such as tiling and fusion that exploit 
producer-consumer locality down the pipeline. The best choice of 
transformations is architecture-specific; implementations optimized for an x86 
multicore and for a modern GPU often bear little resemblance to each other.


Ragan-Kelley et al. “Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines.” SIGGRAPH 2012


