Parallelism and
programming languages

CS242-11/20/19

Concurrency ” Parallelism

Competitive Cooperative

Parallelism:

Use multiple resources to
accomplish a goal faster.

Sourrire for aurmg o wwur lssel owhert

“GOGGLE NEXUS 7.2013
fﬁﬁkn_‘ }E’XGAMEPLAY

FONEARENA

S

&

BONUS_90000), TIME_02°10"35)
MAXHIT 25 GRADE__+ 14.21'

Dusde learmed the skill P DEV Devrvane

5o W —

Bteaser:"‘.
» [@ j\t)‘ ‘]
e Vasel

A\

.

S| DONT EVE..

\

/—

How To UNLOCK THE
GOoLD TRENCH KNIFE

g Jope !
——, W—]

|

" >

(O I
i D TR

Single-core is tapped out (mostly)

10,000,000
Dual-Core Itanium 2 o
1,000,000 ; - r .
. @ -
Intel CPU Trends |
(sources: Intel, Wikipedia, K. Olukotun) =
100,000 ;
10,000
1,000
100
10
1 @ Transistors (000) |
® Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0 N

1970 1975 1980 1985 1990 1995 2000 2005 2010

Creating a parallel program

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **

(“workers”)

Parallel program
(communicating
threads)

Execution on
parallel machine

Adopted from: Culler, Singh, and Gupta

[Problem to solve]

Ny

C o)
o WUy
N ()

** | had to pick a term

These responsibilities may be assumed by
the programmer, by the system (compiler,
runtime, hardware), or by both!

CMU 15-418/618, Spring 2016

Sum prime numbers in a vector

fn main() {
let vec: Vec<ibd> = (0..).collect():

let mut sum: 164 = 0;
for i in vec.iter() {
if is _prime(i) {

sum += 1;
¥
+

let sum: i64 = vec.iter().filter(is_prime).sum();

println! ("Sum: {}", sum);

Sum prime numbers in a vector in parallel

use std::{thread, sync::Arc}; .
const NUM_WORKERS: usize = 8; |, Decomposition: K chunks

fn main() {
let vec: Arc<Vec<ib4>> = Arc::new((0..100000).collect()):

let chunk_size: usize = vec.len() / NUM_WORKERS;

let handles: Vec<thread::JoinHandle<ib4>> =
(0..NUM_WORKERS) .map(|i| {
let vec_ref = vec.clone();
thread: :spawn(move || {
let range = (ijk chunk_size) .. ((i + 1) * chunk_size);
vec_ref[range]l Jditer().filter(is_primp).sum()
)

}).collect();

2. Assignment

let mut final_sum = 0;

for handle in handles { 4 Mapplng

final_sum += handle.join().unwrap(
¥

orintlnt ("Sum: {}*, final sumT® 3. Orchestration

How can we achieve the same effect
without all the extra code?

Idea #1: use same language, and try to
find parallelism

let mut sum: 164 = 0; 1et handles: =

for i in 0.. .NUM_WORKERS) .map (|i]| A
if is_prime(i 1et vec_ref = vec.clone();
thread: :spawn(move || {

sum += 1; C /M
, :
¥ W ﬂw }).collect(

Register allocation with graph coloring

live-in

f1 «— 1 '

Jo «— 1 J1

f3 — fot+ fi fo, [1

fa — f3+ fo f3, fo

5 — fat+f3 fa, f3

reax < fs fs

return heax return register
heax <+ 1

@ @ @ @ hedx <+ 1
heax <+ Jedx+ Jeax
hedx <+ ‘eax + Jedx

h I2 3 Ja heax < ‘Jedx + Jeax
feax < Yeax

Frank Pfenning, CMU 15-411

Polyhedral analysis for auto-parallelization

for (1 = 0; < N; 1++) {
for (3 =1; 7 < N; J++) {

al1][3] = al3][1] + a[1][3-1]; // 51

al Jj{ej; // 51(0,1)
al (@][1]; // S1(0,2)
al 102]; /7 S1(0,3) —
al 1[0]; // S1(1,1)
al (LIEAS; 7 alll,2) '
al el F#:5101.3)
al Trey: £ 5102.1)
al LeJl1]); 77 S1(2,2)
» al VAR S 4N Y
T 123458 T8) .
i al e #7:51C3.1)

Akihiro Hayashi and Jun Shirako, “Introduction to Polyhedral Compilation” 2016

"Autovectorization is not a programming model”

For a long time most of the Intel compiler team denied that anything more than
their auto-vectorizer was needed to take care of vector unit utilization. We quickly

fell into a cycle:
e They'd inform the graphics folks that they'd improved their auto-vectorizer in
response to our requests and that it did everything we had asked for.

e We'd try it and find that though it was better, boy was it easy to write code that
wasn't actually compiled to vector code-it'd fail unpredictably.

e We'd give them failing cases, a few months would would pass and they'd
inform us that the latest version solved the problem.

It didn't take much to fall off the vectorization path. They tried to patch things up at
first, but eventually came up with #pragma simd, which would disable the “is it
safe to vectorize this” checks in the auto-vectorizer and vectorize the following loop

no matter what.

Matt Pharr, “The story of ispc: origins (part 1)" 2018

Idea #2: restrict the language to make
parallelism implicit

Rayon library in Rust

use rayon::prelude: :x;

fn main() {
let vec: Vec<ib4> = (0..100000).collect();
let sum: i64 = vec.[EIgERada®)]. filter(is_prime).sum();
println!("Sum: {}", sum);

¥

Canonical list processing operations

map(f:T=1U

filter(f : T = Bool
flatMap(f : T = Seq[U]
sample(fraction : Float

) RDDI[T] = RDD[U]
) RDDI[T] = RDD|T]
) RDDI[T] = RDD[U]
) RDDI[T] = RDD|T] (Deterministic sampling)
groupByKey() RDDI(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f: (V,V)=V) : RDDI[(K, V)] = RDD[(K, V)]
Transformations union() : (RDD[T],RDD[T]) = RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() (RDDI[T],RDDI[U]) = RDD[(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDDI[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K]) RDDI[(K, V)] = RDDI[(K, V)]

count() : RDD[T]= Long
collect() RDDI[T] = Seq[T]
Actions reduce(f : (T, T) = T) RDD[T] =T
lookup(k : K) : RDDI[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.” NSDI'12

Theoretical parallelism is well-understood

Operation
length a

nth a1
singleton x
empty
1sSingleton x
1sEmpty x

tabulate f n

map f a

filter f a

subseq a (i, 7)
append a b
flatten a
update a (i,)
inject a b
collect f a

iterate f x a

reduce f x a

1+ W (f) - |allglal
Y W(fw2) 1+ D> S(f(y,2)

Work Span
1 1
1 1
1 1
1 1
1 1
1 1
1+§W(f(z)) 1+ max S (f(i))
1+ ;@W (f()) 1+ max § (f())
1+ ;W(f(a:)) lg|a| +max S (f(z))
1 1
1+ |a| + [b] 1
1+ |a| + 3 ,cq 2] 1+ lg|al
1+ |al 1
1+ |a| + |b] 1

1+ S (f) -1g°|a|

f(y,z)ze:n—) f(y,2)€T (=)
W (f(y,2)) lgla|- —max 5(f(y,z))
v f(y,2)ET(-)

Umut Acar and Guy Blelloch. “Algorithms: Parallel and Sequential.” 2019

Hardest part of parallelism isn't
expressing parallelism

use rayon::prelude: :x;

fn main() {
let vec: Vec<ib4d> = (0..100000).collect();
let sum: 164 = vec.par_iter().filter(is_prime).sum();

println! ("Sum: {}", sum); \-
+
Work imbalance!

Redistribute work evenly N

vec.par_iter().filter(|n| is_prime(n))BSUARA=®). sum();

Scheduling parallelism for image
processing kernel in Halide

Blurring an image in C++

(a) Clean C++ : 9.94 ms per megapixel

void blur (const Image &in, Image &blurred) {
Image tmp(in.width (), in.height());

for (int y = 0; y < in.height (); y++)
for (int x 0; x < in.width(); =x++)
tmp (x, ¥) (in(x-1, y) + in(x, y) + in(x+1l, y))/3;

for (int y = 0; y < in.height(); y++)
for (int x 0; x < in.width(); x++)
blurred(x, y) (tmp (x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

Ragan-Kelley et al. “Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines.” SIGGRAPH 2012

Blurring an image quickly in C++

— (b) Fast C++ (for x86) : 0.90 ms per megapixel ——

void fast_blur (const Image &in, Image &blurred) {
-ml28i one_third = _mm_setl_epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
-ml28i tmp[(256/8)*(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
-ml28i *tmpPtr = tmp;
for (int y = =-1; y < 32+1; y++) {
const uintl6_t +inPtr = & (in(xTile, yTile+ty));
for (int x = 0; x < 256; x += 8) {
a _mm_loadu_sil28((.ml28i*) (inPtr-1));
b _mm_loadu_sil28((.ml28ix) (inPtr+l));
c mm_load sil28((..ml28ix) (inPtr));
S _mm_add_epilé6 (_mm_add epilé(a, b), c);
avg _mm mulhi_epil6(sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;
3}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
-ml28i *outPtr = (. ml28i) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load sil28 (tmpPtr+ (2x256) /8);
b _mm_load sil28 (tmpPtr+256/8);
P mm 15a3Ad 1122 [(+mrmP+ 44\ -

g nun
nu|

For image processing, the global organization of execution and storage is
critical. Image processing pipelines are both wide and deep: they consist of
many data-parallel stages that benefit hugely from parallel execution across
pixels, but stages are often memory bandwidth limited-they do little work per

load and store.

Gains in speed therefore come not just from optimizing the inner loops, but
also from global program transformations such as tiling and fusion that exploit
producer-consumer locality down the pipeline. The best choice of
transformations is architecture-specific; implementations optimized for an x86
multicore and for a modern GPU often bear little resemblance to each other.

Ragan-Kelley et al. "“Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines.” SIGGRAPH 2012

