Parallelism and programming languages

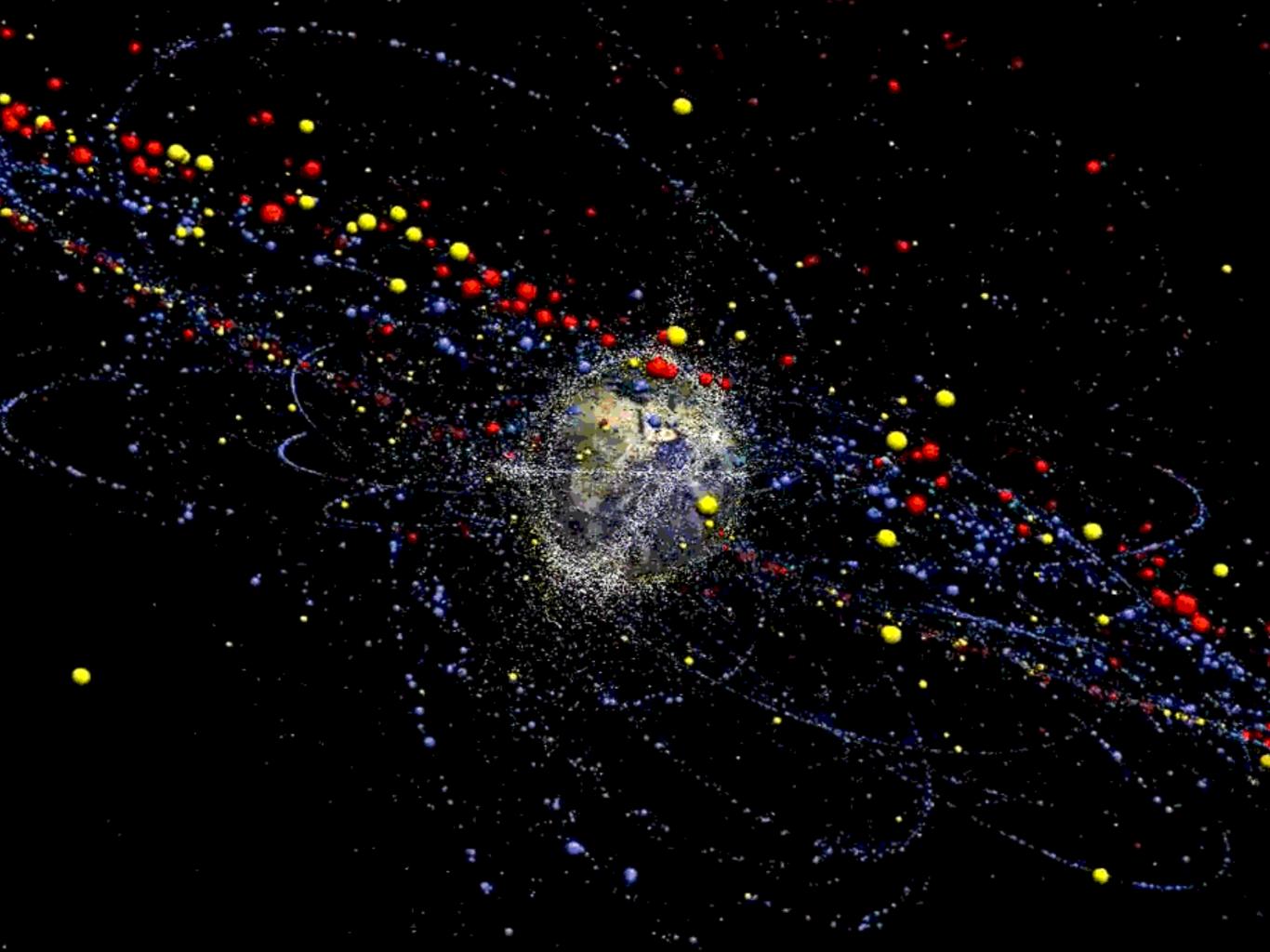
CS 242 - 11/20/19

Concurrency VS. *Competitive*

Parallelism Cooperative

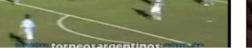
Parallelism:

Use multiple resources to accomplish a goal faster.



A Down Instant Address

Las acrobacias mas epicas de La semana

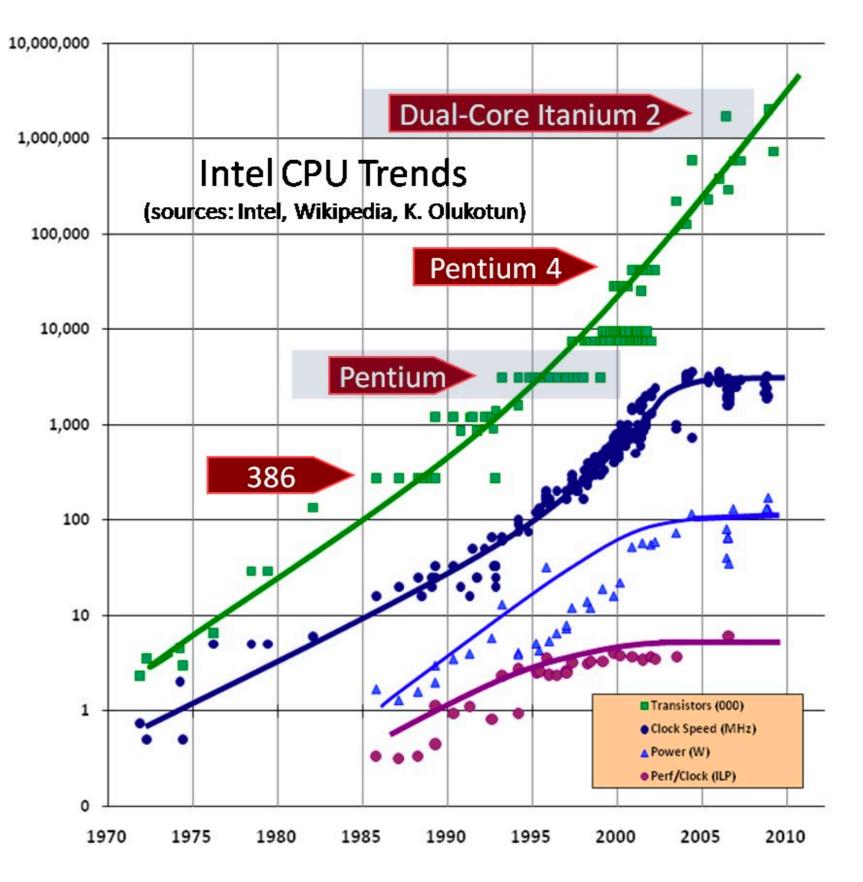


Copa do Mundo da FIFA Brasil 2014

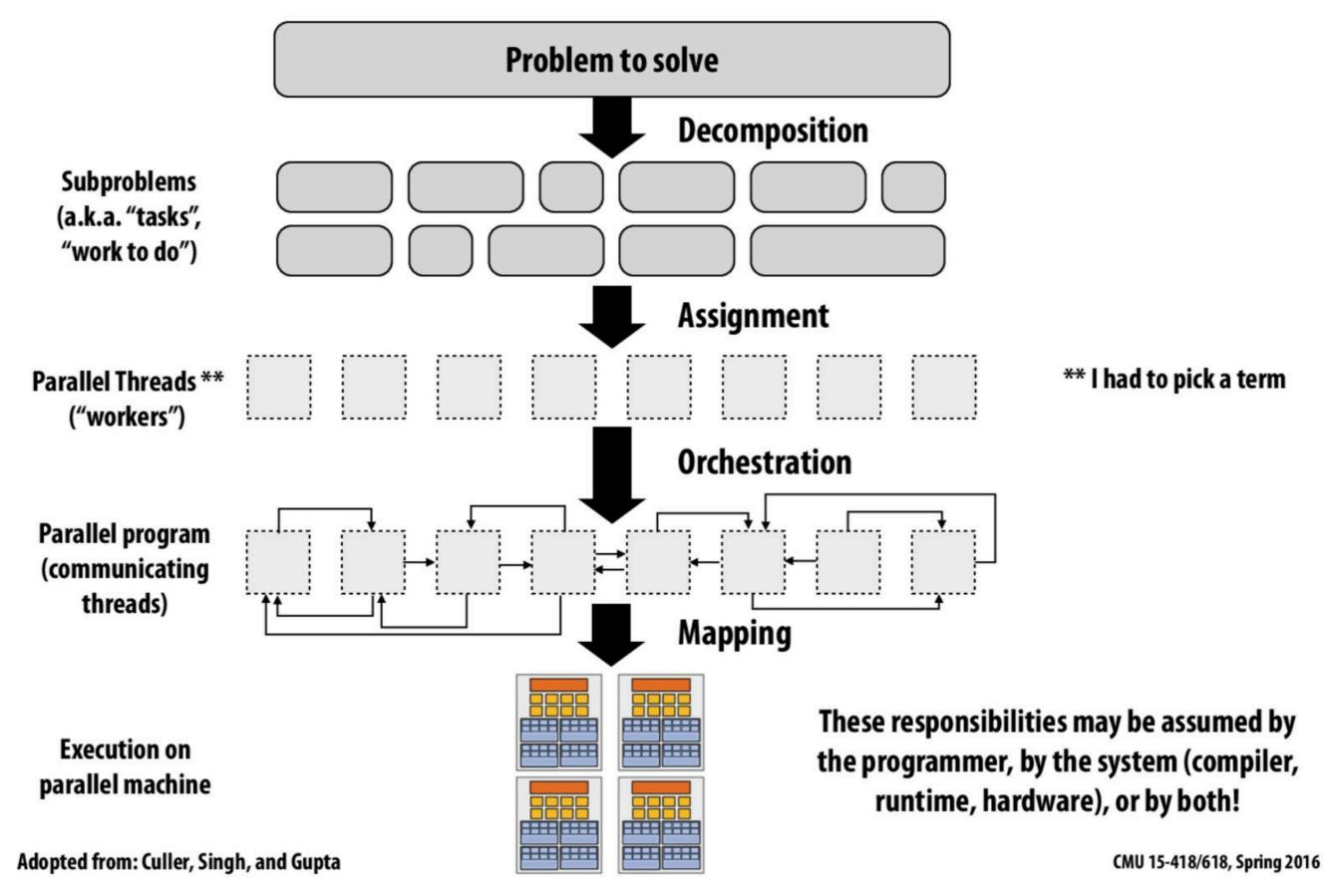
VISA

COMMENT BIEN UTILISÉ SON

Single-core is tapped out (mostly)



Creating a parallel program



Sum prime numbers in a vector

```
fn main() {
  let vec: Vec<i64> = (0..100000).collect();
 // Imperative version
 let mut sum: i64 = 0;
  for i in vec.iter() {
    if is_prime(i) {
      sum += i;
   }
  }
 // Functional version
  let sum: i64 = vec.iter().filter(is_prime).sum();
 println!("Sum: {}", sum);
}
```

Sum prime numbers in a vector in parallel

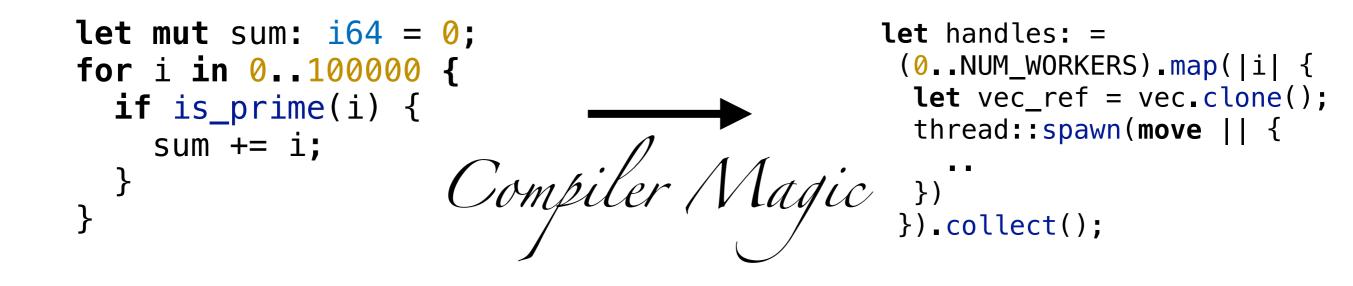
```
use std::{thread, sync::Arc};
const NUM_WORKERS: usize = 8;
```

```
1. Decomposition: K chunks
```

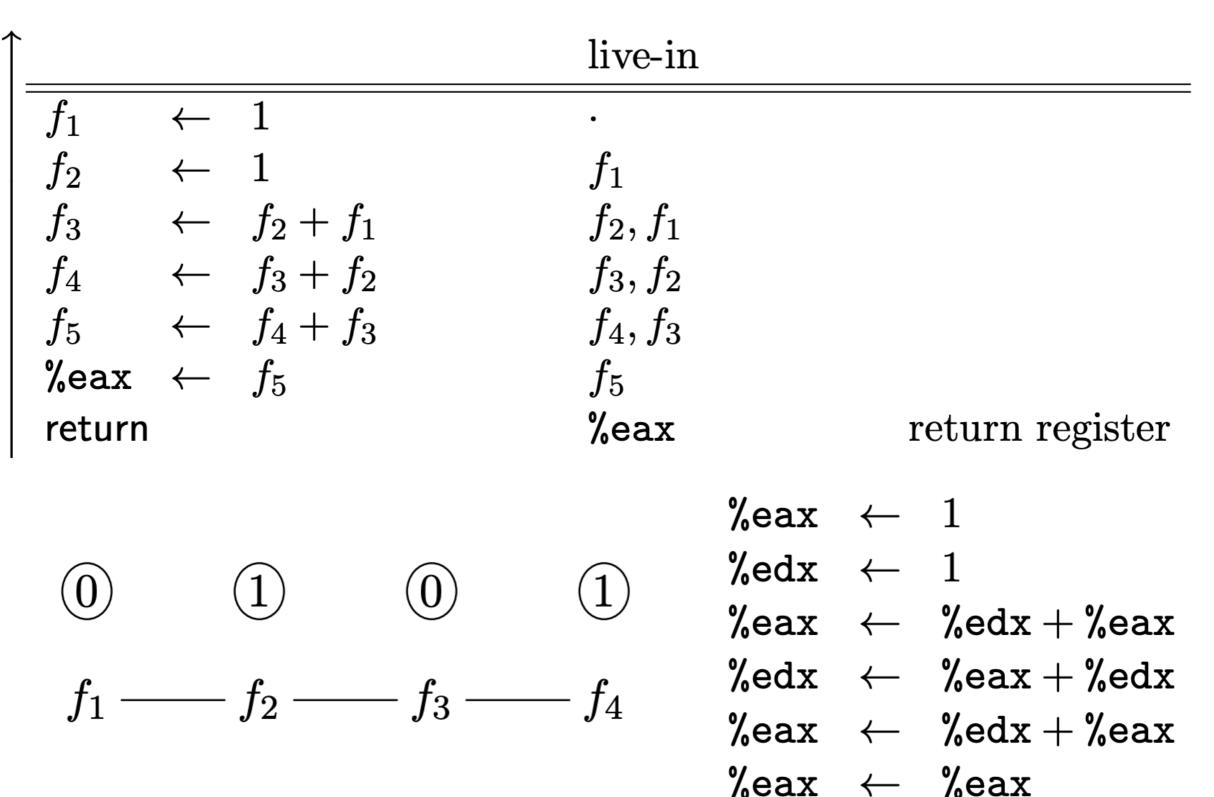
```
fn main() {
 let vec: Arc<Vec<i64>> = Arc::new((0..100000).collect());
 let chunk_size: usize = vec.len() / NUM_WORKERS;
 let handles: Vec<thread::JoinHandle<i64>> =
    (0...NUM_WORKERS).map(|i| {
     let vec_ref = vec.clone();
     thread::spawn(move || {
       let range = (i  chunk_size) .. ((i + 1) * chunk_size);
       vec_ref[range].iter().filter(is_prim_).sum()
     })
   }).collect();
                                                     2. Assignment
 let mut final_sum = 0;
                                 4. Mapping
 for handle in handles {
   final_sum += handle.join().unwrap();
  }
                                      3. Orchestration
 println!("Sum: {}", final_sum);
}
```

How can we achieve the same effect without all the extra code?

Idea #1: use same language, and try to find parallelism

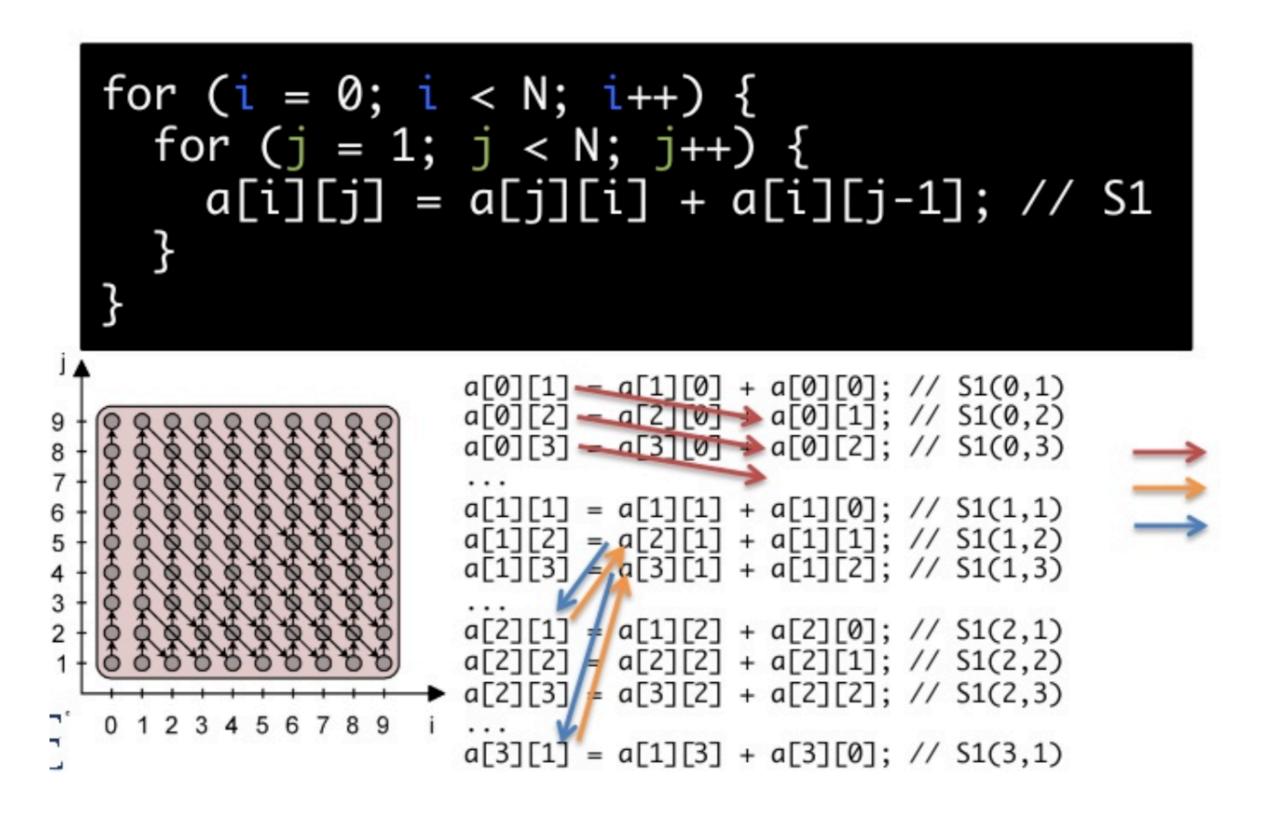


Register allocation with graph coloring



Frank Pfenning, CMU 15-411

Polyhedral analysis for auto-parallelization



Akihiro Hayashi and Jun Shirako, "Introduction to Polyhedral Compilation" 2016

"Autovectorization is not a programming model"

For a long time most of the Intel compiler team denied that anything more than their auto-vectorizer was needed to take care of vector unit utilization. We quickly fell into a cycle:

- They'd inform the graphics folks that they'd improved their auto-vectorizer in response to our requests and that it did everything we had asked for.
- We'd try it and find that though it was better, boy was it easy to write code that wasn't actually compiled to vector code-it'd fail unpredictably.
- We'd give them failing cases, a few months would would pass and they'd inform us that the latest version solved the problem.

It didn't take much to fall off the vectorization path. They tried to patch things up at first, but eventually came up with **#pragma simd**, which would disable the "is it safe to vectorize this" checks in the auto-vectorizer and vectorize the following loop no matter what.

Idea #2: restrict the language to make parallelism implicit

Rayon library in Rust

```
use rayon::prelude::*;
fn main() {
    let vec: Vec<i64> = (0..100000).collect();
    let sum: i64 = vec.par_iter().filter(is_prime).sum();
    println!("Sum: {}", sum);
}
```

Canonical list processing operations

$map(f: T \Rightarrow U)$:	$RDD[T] \Rightarrow RDD[U]$
$filter(f: T \Rightarrow Bool)$:	$RDD[T] \Rightarrow RDD[T]$
$flatMap(f: T \Rightarrow Seq[U])$:	$RDD[T] \Rightarrow RDD[U]$
<pre>sample(fraction : Float) :</pre>	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)
groupByKey() :	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
$reduceByKey(f:(V,V) \Rightarrow V)$:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
union() :	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$
join() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
cogroup() :	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
crossProduct() :	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
$mapValues(f : V \Rightarrow W)$:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)
<i>sort</i> (<i>c</i> : Comparator[K]) :	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
<i>partitionBy</i> (<i>p</i> : Partitioner[K]) :	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
count() :	$RDD[T] \Rightarrow Long$
collect() :	$RDD[T] \Rightarrow Seq[T]$
$reduce(f:(\mathbf{T},\mathbf{T})\Rightarrow\mathbf{T})$:	$RDD[T] \Rightarrow T$
lookup(k: K) :	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
<pre>save(path : String) :</pre>	Outputs RDD to a storage system, e.g., HDFS
	$filter(f: T \Rightarrow Bool) :$ $flatMap(f: T \Rightarrow Seq[U]) :$ $sample(fraction : Float) :$ $groupByKey() :$ $reduceByKey(f: (V, V) \Rightarrow V) :$ $union() :$ $join() :$ $cogroup() :$ $crossProduct() :$ $mapValues(f: V \Rightarrow W) :$ $sort(c : Comparator[K]) :$ $partitionBy(p : Partitioner[K]) :$ $count() :$ $collect() :$ $reduce(f: (T, T) \Rightarrow T) :$ $lookup(k: K) :$

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Zaharia et al. "Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing." NSDI'12

Theoretical parallelism is well-understood

Operation	Work	Span
length a	1	1
$nth \; a \; i$	1	1
$singleton \; x$	1	1
empty	1	1
$is Singleton \; x$	1	1
$isEmpty \ x$	1	1
$tabulate \ f \ n$	$1 + \sum_{i=0}^{n} W\left(f(i)\right)$	$1 + \max_{i=0}^{n} S\left(f(i)\right)$
map fa	$1 + \sum_{x \in a}^{i=0} W\left(f(x)\right)$	$1 + \max_{x \in a} S\left(f(x)\right)$
filter f a	$1 + \sum_{x \in a}^{x \in a} W\left(f(x)\right)$	$\lg a + \max_{x \in a} S\left(f(x)\right)$
$subseq \ a \ (i,j)$	1	1
append a b	1+ a + b	1
$flatten \ a$	$1 + a + \sum_{x \in a} x $	$1 + \lg a $
$update \; a \; (i,x)$	$1+\overline{ a }$	1
$inject \ a \ b$	1+ a + b	1
$collect \ f \ a$	$1+W\left(f ight)\cdot\left a ight \mathrm{lg}\left a ight $	$1 + S\left(f ight) \cdot \lg^2 a $
$iterate \ f \ x \ a$	$1 + \sum W(f(y,z))$	$1 + \sum S(f(y,z))$
	$f(y,z)\in\mathcal{T}(-)$	$f(y,z) \in \mathcal{T}(-)$
$reduce \ f \ x \ a$	$1 + \sum_{f(y,z)\in\mathcal{T}(-)} W\left(f(y,z)\right)$	$\lg a \cdot \max_{f(y,z) \in \mathcal{T}(-)} S\left(f(y,z) ight)$

Umut Acar and Guy Blelloch. "Algorithms: Parallel and Sequential." 2019

Hardest part of parallelism isn't expressing parallelism

```
use rayon::prelude::*;
fn main() {
    let vec: Vec<i64> = (0..100000).collect();
    let sum: i64 = vec.par_iter().filter(is_prime).sum();
    println!("Sum: {}", sum);
}
Work imbalance!
```

Redistribute work evenly

vec.par_iter().filter(|n| is_prime(n)).shuffle().sum();

Scheduling parallelism for image processing kernel in Halide

Blurring an image in C++

Ragan-Kelley et al. "Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines." SIGGRAPH 2012

Blurring an image quickly in C++

_____ (b) Fast C++ (for x86) : 0.90 ms per megapixel _____

```
void fast_blur(const Image &in, Image &blurred) {
 \_m128i one_third = \_mm\_set1\_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
  __m128i a, b, c, sum, avg;
  \_m128i tmp[(256/8) * (32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   __m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_loadu_si128((_m128i*)(inPtr-1));
     b = _mm_loadu_si128((\_m128i*)(inPtr+1));
     c = \_mm\_load\_si128((\_m128i*)(inPtr));
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    __m128i *outPtr = (__m128i *)(&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_load_si128(tmpPtr+(2*256)/8);
     b = _mm_load_sil28(tmpPtr+256/8);
     c = mm \log d \sin (28 (tmpPtr++))
```

For image processing, the global organization of execution and storage is critical. Image processing pipelines are both wide and deep: they consist of many data-parallel stages that benefit hugely from parallel execution across pixels, but stages are often memory bandwidth limited-they do little work per load and store.

Gains in speed therefore come not just from optimizing the inner loops, but also from global program transformations such as tiling and fusion that exploit producer-consumer locality down the pipeline. The best choice of transformations is architecture-specific; implementations optimized for an x86 multicore and for a modern GPU often bear little resemblance to each other.

Ragan-Kelley et al. "Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines." SIGGRAPH 2012