
CS 242:  
Programming Languages

Will Crichton

Course staff

Will

Jayden

Danny

Sicheng

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

• Statements operate on invisible state

• Computes word-at-a-time by repetition of assignment/modification

• Requires names for arguments, iterator, return value

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

• Statements operate on invisible state

• Computes word-at-a-time by repetition of assignment/modification

• Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

• Statements operate on invisible state

• Computes word-at-a-time by repetition of assignment/modification

• Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

• Built from composable functions (map, reduce, pipe)

• Operates on whole conceptual units (lists), no repeated steps

• No names for arguments or temporaries

public class Person {
 private final String firstName;
 private final String lastName;
 private final Integer age;
 public Person(String firstName,

 String lastName,
 Integer age) {

 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }
 public String getFirst() {
 return firstName;
 }
 public String getLast() {
 return lastName;
 }
 public Integer getAge() {
 return age;
 }
 public Boolean valid() {
 return age > 18;
 }
}

 David Pollak, “Beginning Scala”

public static List<String> validByAge(List<Person> in) {
 List<Person> people = new ArrayList<Person>();
 for (Person p: in) {
 if (p.valid()) people.add(p);
 }

 Collections.sort(people, new Comparator<Person>() {
 public int compare(Person a, Person b) {
 return a.age() - b.age();
 }
 });

 List<String> ret = new ArrayList<String>();
 for (Person p: people) {
 ret.add(p.first);
 }
 return ret;
}

List<Person> input = new ArrayList<Person>();
input.add(new Person("John", "Valid", 32));
input.add(new Person("John", "InValid", 17));
input.add(new Person("OtherJohn", "Valid", 19));

List<Person> output = validByAge(input)

public class Person {
 private final String firstName;
 private final String lastName;
 private final Integer age;
 public Person(String firstName,

 String lastName,
 Integer age) {

 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }
 public String getFirst() {
 return firstName;
 }
 public String getLast() {
 return lastName;
 }
 public Integer getAge() {
 return age;
 }
 public Boolean valid() {
 return age > 18;
 }
}

 David Pollak, “Beginning Scala”

public static List<String> validByAge(List<Person> in) {
 List<Person> people = new ArrayList<Person>();
 for (Person p: in) {
 if (p.valid()) people.add(p);
 }

 Collections.sort(people, new Comparator<Person>() {
 public int compare(Person a, Person b) {
 return a.age() - b.age();
 }
 });

 List<String> ret = new ArrayList<String>();
 for (Person p: people) {
 ret.add(p.first);
 }
 return ret;
}

List<Person> input = new ArrayList<Person>();
input.add(new Person("John", "Valid", 32));
input.add(new Person("John", "InValid", 17));
input.add(new Person("OtherJohn", "Valid", 19));

List<Person> output = validByAge(input)

public class Person {
 private final String firstName;
 private final String lastName;
 private final Integer age;
 public Person(String firstName,

 String lastName,
 Integer age) {

 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }
 public String getFirst() {
 return firstName;
 }
 public String getLast() {
 return lastName;
 }
 public Integer getAge() {
 return age;
 }
 public Boolean valid() {
 return age > 18;
 }
}

case class Person(val first: String, val last: String, val age: Int) {
 def valid: Boolean = age > 18
}

def validByAge(in: List[Person]) =
 in.filter(_.valid).sortBy(_.age).map(_.first)

validByAge(List(
 Person("John", "Valid", 32),
 Person("John", "Invalid", 17),
 Person("OtherJohn", "Valid", 19))) David Pollak, “Beginning Scala”

Fact #1: Developers are reading, not writing

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time” ICPC ’15.

Fact #2: Software ecosystems are complex

Fact #2: Software ecosystems are complex

Fact #3: Dennard scaling is dead

Memory usage continues to scale

700 MB!

3 GB!!!

Huge perf gap for most programs

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009

“The majority of vulnerabilities fixed and with a CVE assigned
are caused by developers inadvertently inserting memory
corruption bugs into their C and C++ code.”

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019

Fact #4: Bugs are not improving

1. Developers are mostly comprehending/debugging code

2. Software ecosystems are growing in complexity

3. CPU hardware performance is stalling

4. Bugs aren’t getting any better

Facts of modern software development

1. How did we get here?

2. What is the way out?

Alan Turing Alonzo Church

“A set of postulates for the
foundation of logic”, 1932

“On Computable
Numbers” 1937

Lambda calculus

Lambda calculus

Turing machines

John Backus,

“History of FORTRAN” 1978

John Backus,

“History of FORTRAN” 1978

Prior to FORTRAN, most source language operations
were not machine operations. Large inefficiencies in
looping and computing addresses were masked by
time spent in floating point subroutines.

The advent of the 704 with built-in floating point
and indexing radically altered the situation. …It
increased the problem of generating efficient
programs by an order of magnitude by speeding up
floating point operations by a factor of ten and
thereby leaving inefficiencies nowhere to hide. This
caused us to regard the design of the translator as
the real challenge, not the simple task of designing
the language.

Alan Perlis,

“The American Side of the
Development of Algol” 1978

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the begin
end delimiters, block, call by value and call by
name, typed procedures, declaration scope,
dynamic arrays, side effects, global and local
variables.

Algol was strongly derived from FORTRAN and its
contemporaries. The logic, arithmetic and data
organizations were close to those then being
designed into real computers. Certain simple
generalizations of computer instructions such as
switch, for statement, and if statements were
included because their semantics and computer
processing were straight-forward consequences of
single statement processing.

C fits firmly in the traditional procedural family typified
by Fortran and Algol 60. It is ‘close to the machine’ in
that the abstractions it introduces are readily grounded
in the concrete data types and operations supplied by
conventional computers.

The most important [historical accident] has been the
tolerance of C compilers to errors in type. C evolved from
typeless languages. It did not suddenly appear to its
earliest users as an entirely new language with its own
rules; instead we continually had to adapt existing
programs as the language developed, and make
allowance for an existing body of code.

Ken Thompson,

Dennis Ritchie

“The Development of
the C Language” 1993

Our first main task was to carry out resonance absorption calculations related to
the construction of Norway's first nuclear reactor. Monte Carlo simulation methods
were successfully introduced instead in 1949-1950. The necessity of using
simulation and the need of a language for system description was the direct
stimulus for SIMULA.

When writing simulation programs we had observed that processes often shared a
number of common properties, both in data attributes and actions, but were
structurally different in other respects so that they had to be described by separate
declarations. Such partial similarity fairly often applied to processes in different
simulation models, indicating that programming effort could be saved by
somehow preprogramming the common properties.

Kristen Nygaard and Ole-Johan Dahl

“The Development of SIMULA
Languages”, 1978

[Simula’s] class concept allowed me to map my
application concepts into the language constructs in a
direct way. The way Simula classes can act as coroutines
made the inherent concurrency of my application easy
to express.

The implementation of Simula, however, did not scale
in the same way and as a result the whole project came
close to disaster. The cost arose from several language
features and their interactions: run-time type checking,
guaranteed initialization of variables, concurrency
support, and garbage collection of both user-allocated
objects and procedure activation records.

Bjarne Stroustrup

“A History of C++:
1979-1991”, 1993

The team originally considered using C++, but rejected it for several
reasons. They decided that C++’s complexity led to developer errors. The
language's lack of garbage collection meant that programmers had to
manually manage system memory, a challenging and error-prone task.
The team also worried about the C++ language's lack of portable
facilities for security, distributed programming, and threading. Finally,
they wanted a platform that would port easily to all types of devices.

Sun Microsystems, 1997

— Wikipedia??

Guido van Rossum

“The Making of
Python”, 2003

My initial goal for Python was to serve as a second
language for people who were C or C++ programmers,
but who had work where writing a C program was just
not effective.

Maybe it was something you'd do only once. It was the
sort of thing you'd prefer to write a shell script for, but
when you got into the writing details, you found that
the shell was not the ideal language—you needed more
data structures, more namespaces, or maybe more
performance. The first sound bite I had for Python was,
"Bridge the gap between the shell and C."

Turing languages
1957 — FORTRAN
1959 — ALGOL

1972 — C

1962 — SIMULA

1979 — C++

1995 — Java
1991 — Python

John McCarthy,

“History of LISP” 1978

My own research in artificial intelligence [in
1958]… involved representing information
about the world by sentences in a suitable
formal language and a reasoning program that
would decide what to do by making logical
inferences. Representing sentences by list
structure seemed appropriate and a list-
processing language also seemed appropriate
for programming the operations involved in
deduction.

…One needs a notation for functions, and it
seemed natural to use the λ-notation of Church
(1941). I didn't understand the rest of his book,
so I wasn't tempted to try to implement his more
general mechanism for defining functions.

The languages people use to communicate with
computers differ in their intended aptitudes, towards
either a particular application area, or a particular phase
of computer use (high level programming, program
assembly, job scheduling, etc). The question arises, do
the idiosyncrasies reflect basic logical properties of the
situations that are being catered for? Or are they
accidents of history and personal background that may
be obscuring fruitful developments?

ISWIM is an attempt at a general purpose system for
describing things in terms of other things, that can be
problem-oriented by appropriate choice of "primitives."
A possible first step in the research program is 1700
doctoral theses called "A Correspondence between x and
Church's λ-notation.”

Peter Landin,

“The Next 700
Programming
Languages” 1966

The principal aims in designing ML were to make
it impossible to prove non-theorems yet easy to
program strategies for performing proofs.

A strategy—or recipe for proof—could be something
like “induction on f and g , followed by assuming
antecedents and doing case analysis, all
interleaved with simplification”. This is imprecise—
analysis of what cases? what kind of induction,
etc, etc.—but these in turn may well be given by
further recipes, still in the same style.

Robin Milner,

“A Metalanguage for
Interactive Proof in LCF”
1978

The simplicity and elegance of functional programming captivated the
present authors. Lazy evaluation— with its direct connection to the pure, call-
by-name lambda calculus, the remarkable possibility of representing and
manipulating infinite data structures, and addictively simple and beautiful
implementation techniques—was like a drug.

Hudak et al.

“A History of Haskell:
Being Lazy with Class”
2007

Church languages

1959 — LISP

1966 — ISWIM

1978 — ML

1990 — Haskell

1972 — Prolog

Turing languages
1957 — FORTRAN
1959 — COBOL, ALGOL

1972 — C, Smalltalk

1962 — SIMULA

1979 — C++

1995 — Java
1991 — Python

Church languages are intimidating

Couldn't match type `k0' with `b'
 because type variable `b' would escape its scope
This (rigid, skolem) type variable is bound by
 the type signature for
 groupBy :: Ord b => (a -> b) -> Set a -> Set (b, [a])
The following variables have types that mention k0

PL theory can be really dense

Vezzosi et al. “Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types” ICFP ‘19

Thesis:

Ideas from Church languages will radically
improve how we 1) think, 2) communicate,
and 3) program in software design.

Corollary:

Learning these ideas gives you a
programming superpower to make correct
and reliable software way more productively.

Von Neumann languages (e.g., the FORTRANs, the ALGOLs) constantly
keep our noses pressed in the dirt of the separate computation of single
words, whereas we should be focusing on the form and content of the
overall result. We regard the DO, FOR, WHILE statements and the like as
powerful tools, whereas they are in fact weak palliatives that are necessary
to make the primitive von Neumann style of programming viable at all.

… While it was perhaps natural and inevitable that languages like
FORTRAN and its successors developed out of the von Neumann computer,
that such languages have dominated our thinking for twenty years is
unfortunate. Their long-standing familiarity will make it hard for us to
understand and adopt new programming styles which one day will offer
far greater intellectual and computational power.

— John Backus, “The history of FORTRAN I, II, and III”, 1978

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

• Statements operate on invisible state

• Computes word-at-a-time by repetition of assignment/modification

• Requires names for arguments, iterator, return value

let innerproduct = zip |> (map *) |> (reduce +)

• Built from composable functions (map, reduce, pipe)

• Operates on whole conceptual units (lists), no repeated steps

• No names for arguments or temporaries

Modular design is the key to successful programming. When writing a modular
program to solve a problem, one first divides the problem into subproblems,
then solves the subproblems, and finally combines the solutions.

The ways in which one can divide up the original problem depend directly on
the ways in which one can glue solutions together. Therefore, to increase one’s
ability to modularize a problem conceptually, one must provide new kinds of
glue in the programming language.

— John Hughes, “Why Functional Programming Matters” 1989

Tackling complexity through modularity

let innerproduct = zip |> (map *) |> (reduce +)

fun innerproduct(a, b, n):
 c := 0
 for i := 1 step 1 until n do
 c := c + a[i] * b[i]
 return c

Any * Any -> Any
def innerproduct(a, b): ...

typedef struct { float* arr; ... } vec_t;
float innerproduct(vec_t a, vec_t b)

public class Vec<T> {
 public T innerproduct(Vec<T> other);
}

innerproduct : Vec n a -> Vec n a -> a

Python

C

Java

Idris

Church languages are coming!

(with types)

+

Messenger used to receive bugs reports on a daily basis; since the introduction
of Reason, there have been a total of 10 bugs (that's during the whole year, not
per week)! Refactoring speed went from days to hours to dozens of minutes.

— “Messenger.com Now 50% Converted to Reason” 2017

Being able to encode constraints of your application in the type system makes
it possible to refactor, modify, or replace large swaths of code with confidence.
Rust's error model forces developers to handle every corner case. [Our system]
needs very little attention. We were able to leave it running without any issues
through the holiday break.

— “Rust at OneSignal” 2017

Companies are realizing FP benefits

Formal verification is around the corner

• The software world is ready for better languages

- The languages we use today have barely changed in 60 years

- Developer spending 5% time writing code

- Huge, buggy, slow software ecosystems

• Church languages focus on mathematics of programming

- Advanced type systems and functional features promote modularity,

specification, and verification

- Not mainstream due to inefficiencies, lack of application focus

• The future is functional

- Better compilers, better understanding of which concepts matter in

practice, better awareness are moving Church languages to mainstream

Takeaway points

• Formal representation of and reasoning about programs

- Descriptions of syntax and semantics of languages

- Mathematical specification of program behavior (type systems)

- Inductive proofs about programs and languages

- Formal model of both functional and imperative languages

• You should be able to…

- Learn more advanced PL theory

- Read basic PL theory papers (and understand them)

- Understand the essence of basic computational concepts

Key concepts and skills: theory

• Functional programming techniques

- Explicit state-passing with expression-oriented programming

- Abstract patterns with higher-order functions

- Error handling and inductive data with algebraic data types

- Generic/modular programming with polymorphism and traits

- Resource management/concurrency with linear types

- Verified communication with session types

• You should be able to…

- Structure low-level code to avoid large classes of bugs

- Learn new functional programming languages more effectively

- Recognize opportunities for Church programming in Turing languages

• “Will, I feel guilty now every time I write a for loop” — CURIS student in my office for the summer

Key concepts and skills: practice

• Theory: CS 103

- First-order logic, induction, discrete math

- Strongly encouraged

• Systems: CS 107 + 110

- 107 absolutely

- 110 for a bit of the multithreading

Course prerequisites

• Weekly assignments

- Get started early!

- Mixture of written problems and programming problems

- Expect 15 hr/week including lecture

• No midterm, take-home final exam

- Assignments are more work to compensate

• Everything available on course website

- cs242.stanford.edu

- Including detailed lecture notes and slides

Course logistics

http://cs242.stanford.edu

• Yes, everything is recorded through SCPD

- Yes, you can watch everything from your sofa

• I still recommend you come to class!

- Put yourself in a learning environment

- I will always give time for thought and questions

• …But no laptops

- Don’t distract people if you’re going to attend lectures

Attending lectures

