CS 242:

Programming Languages

Will Crichton

Course staff

fun innerproduct(a, b, n):
c := 0
| 1 step 1 until n do
+ al[il * b[i]

fun innerproduct(a, b, n):

c :=0

for i := 1 step 1 until n do
C :=c + alil * b[il]

return c

o Statements operate on invisible state

e Computes word-at-a-time by repetition of assignment/modification
e Requires names for arguments, iterator, return value

fun innerproduct(a, b, n):

c :=0

for i := 1 step 1 until n do
C :=c + alil * b[il]

return c

o Statements operate on invisible state

e Computes word-at-a-time by repetition of assignment/modification
e Requires names for arguments, iterator, return value

let innerproduct = zip |> (map %) |> (reduce +)

fun innerproduct(a, b, n):

c :=0

for i := 1 step 1 until n do
C :=c + alil * b[il]

return c

o Statements operate on invisible state

e Computes word-at-a-time by repetition of assignment/modification
e Requires names for arguments, iterator, return value

let innerproduct = zip |> (map %) |> (reduce +)

e Built from composable functions (map, reduce, pipe)

e QOperates on whole conceptual units (lists), no repeated steps
* No names for arguments or temporaries

public class Person {
private final String firstName;
private final String lastName;
private final Integer age;
public Person(String firstName,
String lastName,
Integer age) {
this.firstName = firstName;
this. lastName = lastName;
this.age = age;
¥
public String getFirst() {
return firstName;
¥

public String getLast() {
return lastName;
}

public Integer getAge() {
return age;
}

public Boolean valid() {
return age > 18;
}

David Pollak, “Beginning Scala”

public class Person { public static List<String> validByAge(List<Person> in) {

private final String firstName; List<Person> people = new ArrayList<Person>();
private final String lastName; for (Person p: in) {

private final Integer age; if (p.valid()) people.add(p);

public Person(String firstName, ¥

String lastName,

Integer age) A{ Collections.sort(people, new Comparator<Person>() {
this.firstName = firstName; public int compare(Person a, Person b) {
this. lastName = lastName; return a.age() - b.age();
this.age = age; ¥

I3 P
public String getFirst() {
return firstName; List<String> ret = new ArrayList<String>();
} for (Person p: people) {
public String getLast() { ret.add(p.first);
return lastName; }
¥ return ret;
public Integer getAge() { I3
return age;
} List<Person> input = new ArrayList<Person>();
public Boolean valid() { input.add(new Person("John", "Valid",));
return age > 18; input.add(new Person('"John", "InValid",));
¥ input.add(new Person("0OtherJohn", "Valid",));

List<Person> output = validByAge(input)

David Pollak, “Beginning Scala”

public class Person {

private final String firstName;
private final String lastName;
private final Integer age;
public Person(String firstName,
String lastName,
Integer age) {
this.firstName = firstName;
this. lastName = lastName;
this.age = age;
¥
public String getFirst() {
return firstName;
¥

public String getLast() {
return lastName;
}

public Integer getAge() {
return age;
}

public Boolean valid() {
return age > 18;

}

public static List<String> validByAge(List<Person> in) {
List<Person> people = new ArraylList<Person>();
for (Person p: in) {
if (p.valid()) people.add(p);
¥

Collections.sort(people, new Comparator<Person>() {
public int compare(Person a, Person b) {
return a.age() - b.agel();
I3

Y)

List<String> ret = new ArraylList<String>();
for (Person p: people) {
ret.add(p.first);
s
return ret;

}

List<Person> input = new ArrayList<Person>();
input.add(new Person("John", "Valid", 32));
input.add(new Person("John", "InValid", 17));
input.add(new Person("OtherJohn", "Valid", 19));

List<Person> output = validByAge(input)

case class Person(val first: String, val last: String, val age: Int) {

def valid: Boolean =

}

age >

def validByAge(in: List[Person]) =
in.filter(_.valid).sortBy(_.age).map(_.first)

validByAge(List(

Person('"John", "Valid",
Person("John", "Invalid",),
Person("OtherJohn", "Valid",)))

)
David Pollak, “Beginning Scala”

Fact #1: Developers are reading, not writing

Editing (~5%) Navigation (~4%)

Outside IDE (-8%)

i

Minelli et al. “I Know What You Did Last Summer: An Investigation of How Developers Spend Their Time" ICPC '15.

Project = Comprehension Navigation Editing Others
Average 57.62% 23.96% 5.02% 13.40%

Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with Professionals.” IEEE Trans. Softw. Eng, 2018.

Fact #2: Software ecosystems are complex

‘ Find the detailed version of this roadma p
FrOnt'end along with resources and other roadmaps

(http:// roadmap.sh
| |

Containers Configuration Management Container Orchestration Infrastructure Provisioning
o Learn some CI/CD Tool — e T
Docker Ansible Salt Kubernetes Mesos Terraform
Jenkins
rkt Chef Puppet Docker Swarm Nomad Cloud Formation
Travis CI
LXC
TeamCity
i . | Infrastructure Monitoring |, '.' 777l Nagios
Circle ClI © Learn how to monitor software and infrastructure |- ... ‘e :
‘., .t cinga
AWS .) Application Monitoring Y. °-. Datadog
ELK Stack ” .. e
. Zabbi
Google Cloud e o ¢ *e *. .
Graylog [© “{ Logs Management AppDynamics New Relic | Monit
Azure .
Splunk o
Digital Ocean .
Papertrail
Heroku

.. o Cloud Providers

Keep Exploring

‘00’0 e @ 0 @ Q[womimi |
R0%
% a8 T
%80 % % 2y %, %, Using ETL Stratified - & é\'g’
% K N A o Rl 4 & &
G P %, %, %, % Y5 % How much Data? - N b S @
'%o E ooie %e 09’ o”& %; &00’ B Principal N & & o 6\0
Y Uy o, T 4 T 2 . SaComponent ° 3 >
’Io% %,) J% % 644 . ”’o\, %\9 _,% Google OpenRefine (@ Analysis

Feature Data Survey ({
traction

Using
ahout

Using 6. Visualization O
eka
&

Perceptroj . Data Exploration in R (Hist, Boxplot etc)
Linear Regression e e :
Regression . Uni, Bi & Multivariate Viz
Ranking . ggplot2
Logistic Regression . Histogram & Pie (Uni)
. Tree & Tree Map
0 10. Toolbox

Classification . Scatter Plot (Bi)

. Line Charts (Bi) . MS Excel w/ Analysis ToolPak
@ spatial Charts @ 22w, python
. Survey Plot ‘ R, R-Studio, Rattle

0,_;'\? . Timeline . Weka, Knime, RapidMiner

2
_ AP — % N
‘ oo e e
Data Frames Lists

1. Fundamentals Prob Den Fn (PDF)

O ANOVA

Skewness
Matrices & Linear Algebra Fundamentals .

Continuos Distributions

Hash Functions, Binary Tree, O(n) ormal, Poisson, Gaussian) . Decision Tree . Hadoop Dist of Choice
Cumul Dist Fn (CDF)
Relational Algebra, DB Basics . qg} Do of @ ‘ Spark, Storm
: Reading CSV Data Factors § & So & & &
. Random Variables 9 E § LSS & & § S & : S

Inner, Outer, Cross, Theta Join . Cr 5 06‘, ~ 3 é}. S & & ? N %§ ‘Fume, Scibe, Chukwa
Bayes Theorem Reading Raw Data v & o & § S éz? NI cs & -
CAP Theorem . . S §HFHF © £ S o Nutch, Talend, Scraperwiki

- . Matrices £ S < g Q S
Tabular Data Probability Theory Subsetting Data Webseraber. Flume. Sao
Data Frames & Series () (@) . , @ e Vectors Zookseper aper, Flume, Sqoop
&, Percentiles & Outliers . N Data Nod
Sharding . ”oﬁy %‘-‘1‘0 Data Frames ngg ame & Data Nodes . Storm: Hadoop . tm, RWeka, NLTK
' ” -
Histograms /"s, 4%;/ Functions iabl Setup Hadoop (IBM / Cloudera / HortonWorks) sl
oy We,: Variables
OLAP . , ko R - Rhadoop, RHIPE
Exploratory Data Analysis PSS Data Replication Principles RHIPE
. . : D3.js, ggplot2, Shin
Multidimensional Data Model ’ & Descriptive Statistics Expressions . HDFS . rmr ..315 gg ny
\, N (mean, median, range, SD, Var) . c d %, Q.
= . al SR i S . Hadoop Components . e L 7 N 110%
Y 2\ N Pick a Dataset % 6:;9
> S ¢ F & (UCI Repo) R Setup : %,
2> @ R Studio . Map Reduce Fundamentals . MongoDB, Neodj %, %,

Reporting Vs Bl Vs Analytics . ’360.\\& < . ‘Q}‘

PR
% %
O 7. Big Data ﬁ an %

LU HTTUVE 11 TIUTALT UL

Defined in header <utility>

template< class T >
typename std::conditional<
Istd::1s nothrow move constructible<T>::value && std::is copy constructible<T>::value, C++
const T§&, (unti!
T&& C++
>::type move if noexcept(T& x) noexcept;

template< class T >
constexpr typename std::conditional<

(sinc

Istd::is_nothrow move constructible<T>::value && std::is copy constructible<T>::value, (sinc
const T&, C++
T&&

>::type move if noexcept(T& x) noexcept;

ove if noexcept obtains an rvalue reference to its argument if its move constructor does not throw exceptions or if
here is no copy constructor (move-only type), otherwise obtains an Ivalue reference to its argument. It is typically
sed to combine move semantics with strong exception guarantee.

Parameters

- the object to be moved or copied

Return value

std: :move(x) or x, depending on exception guarantees.

Notes

his is used, for example, by std::vector::resize, which may have to allocate new storage and then move or copy
lements from old storage to new storage. If an exception occurs during this operation, std: :vector: :resize undoes
verything it did to this point, which is only possible if std: :move if noexcept was used to decide whether to use
nove construction or copy construction. (unless copy constructor is not available, in which case move constructor is
sed either way and the strong exception guarantee may be waived)

Exambple

0./.9.1 rormail aemnnition o1 resctricCctc

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of main (or the block of
whatever function 1s called at program startup in a freestanding environment).

In what follows, a pointer expression E 1s said to be based on object P if (at some
sequence point in the execution of B prior to the evaluation of E) modifying P to point to
a copy of the array object into which it formerly pointed would change the value of E.!)
Note that ““based” 1s defined only for expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L 1s used to
access the value of the object X that 1t designates, and X 1s also modified (by any means),
then the following requirements apply: T shall not be const-qualified. Every other lvalue
used to access the value of X shall also have its address based on P. Every access that
modifies X shall be considered also to modify P, for the purposes of this subclause. If P
1s assigned the value of a pointer expression E that 1s based on another restricted pointer
object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior 1s undefined.

Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration

110\ Trn nther ssvnarde B Aonende an the vraliie AfF D 14aalf vrathor than Aan the vvaliie Af oan nhieocrt roafaroncead

Fact #3: Dennard scaling is dead

10,000,000
Dual-Core Itanium 2 o
1,000,000
Intel CPU Trends '
(sources: Intel, Wikipedia, K. Olukotun) -
100,000
10,000
Processor clock rate stops
increasing
1,000
100
- No further benefit from ILP
1 B =Transistor density
e o ® ® = Clock frequency
e A =Power
o @ =Instruction-level parallelism (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 (MU 15-418/618, Spring 2017

Memory usage continues to scale

Process Name

Slack Helper

Slack Helper
\s, Slack

Slack Helper

700 MB!

Process Name

Memory

365.8 MB
234.9 MB
91.8 MB
89.8 MB

Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome

Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper
Google Chrome Helper

Gonnle Chrome Helner

3 GB!!!

Memory

738.8 MB
419.8 MB
399.4 MB
366.4 MB
317.8 MB
57.2 MB
54.9 MB
53.5 MB
45.2 MB
44.5 MB
44.0 MB
43.8 MB
43.6 MB
43.5 MB
43.3 MB
43.2 MB
43.1 MB
42.8 MB
40.0 MB
30.1 MB
18.8 MB
18.4 MB
17.3 MB

Co

Huge perf gap for most programs

Double No BLAS BLAS
Immutable Mutable Only Objects InC Transposed Tiled Vectorized MxM Parallel
ms 17,094,152 77,826 32,800 15,306 7,530 2,275 1,388 511 196 58
| | . n |
| | | | |
219.7x 2.2% 3.4x 2.8x 3.5x
| |
| ‘ | ‘ . J | ‘ ‘ !)
2.4x 2.1x 1.7x 2.7x
219.7x
522X
1117x
2271x
7514x
12316x
33453x
|
87042x
296260x
Cycles/OP 8,358 38 16 7 4 1 12 1/5 1/11 1/36

Saman Amarasinghe, MIT 6.172 "Performance Engineering"”. 2009

Maybe you don't need Rust and
WASM to speed up your]S

Vyacheslav Egorov on 03 feb 2018

Ma
ybe you don't need Rust and

symbol) e e d
*doQuickSort ../dist/source—map.js:
Bu-ilt"m:Argumen u p O
compareByOr"\g-i i = js r
Builtin:CallFunc i ined '
compareByGeneratedPo i i = js OI'OV on O f'
*SourceMapConsumer_ i i - js: 3 Eb 2018
Builtin:StringEqual
*SourceMapConsu i /dist/source—map.js:1894
*doQuickSort 5o j
rna\::Strin 38 i i NoAllocate
mer_parseMap / js:1894

VS::interna\::(anonymo) 1eNoA1\ocateKey::IsMatch

Bui\tin:StringPrototypeSlice

tringThin
ObjectElements

::IteratingStringHasher>
ce—map.js:1894

::RecordWriteSlow

Mayb
e I
you don't need Rust and

/dist/source—
rce—map.js:1063
js:1894

AdaptorTram

Idist/sou

/source—map.
ource—map.js:1894
oAllocate

::IsMatch

gTableNoAl\ocateKey

<Call_ IsNullorU
amespace) «°
peSlice
::MakeStringThin
jectToObjectElements
tringHasher>

Builti
VS::interna\::
rphic

amespace)
::Iteratings
.jss 894

y8::inter
ceMapConsum
Tt .-
.:Incre

xSour
0.64% *doQuickSor /dist/so
0.56% VS::internal menta

funct'

10N

o cloneSort(co

template mparator) {

le
t templateFn

SOrtT
emplate.toString(
g();

return t new F
e un : .
} mplatan(comparCtjon(return ${t
’ 53:}) () .
’

Ma
ybe you don't need Rust and

ith
ar,
Sument adapt
ation

/dist/source—map.js:

1C

7.17%
4 .49%
3.58%
2.73%
2.11%
1.93% xSource o i /dist/source—map.js:
1.66% *doQuickSort 5o j
1.25% V8::interna\::$trin 38 i i NoAllocate
1.22% *SourceMapConsumer_parse / js:1894
1.21%
1.16%
1.14% VS::interna\::(anonymo) 1eNoA1\ocateKey::IsMatch
0.90% in:StringPrototypeSlice
9.86%
9.82% i tringThin
ObjectElements ‘

::IteratingStringHasher>

ce—map.js:1894

::RecordWriteSlow

fUn °
ction cloneSort

t ../dist/source—map.js:2752
tsAdaptorTrampo\ine
itions ../dist/source—map.js:1024
1sNu1\0rUndefined
..Idist/source—map.
ce—map.js:1894

1.93% *SourceMa i ../dist/source—map.js:1894
1.66% *doQuickSort 00 j
1.25% V8::interna\::

1.22% *SourceMapConsumer_

1.21% 'n:StringCharAt

1.16% i

1.14% g::i 1::) bleNoA\\ocateKey::IsMatch
0.90% i

0.86%

9.82% 8 1)::MakeStringThin

0.80% 8)::CopyObjectToObjectElements

1::IteratingStringHasher>
—map.js:1894

fUn o
ction cloneSort

m Jssue 63 '
91: St
ringCharCodeAt slower than C
n Crankshaft;

® Jssue 70 '
92.: High ove
rhead of Stri
f String.prototype.charCodeA
eAt in typescri
ipt test;

m Jssue
732.6: Perf
' ormance d
. I egradati
oo : s .. /di ce-map lon When IOOping across h
character
codes of .
a string;
)

Builtin:StringEqual
*SourceMapConsumer_p
*doQuickSort 5o

../dist/source—map.js:1894
iverIsNullOrUndefined

VS::interna\::(anonymous namespace).:StringTableNoAl\ocateKey::IsMatch
Bui\tin:StringPrototypeSlice

Builtin:KeyedLoadIC_Megamorphic
v8::interna1:: amespace)::MakeStringThin
VS::internal::)::CopyObjectToObjectElements

v8::interna1::

VS::internaI::String::V' i ::'nterna\::IteratingStringHasher>

% *SourceMapCo in ../distlsource—map.js:1894
*doQuickSort 5o
v8::internal::Incrementa\Marking::RecordWriteSlow

function cloneSort

m Issue 6391: StringCharCodeAt slow , rex, Ure,) @"70/3,[y or .
. o S Pf?) t/) 3 5
m Issue 7092: High overhead of Stri ger thy r y S 7. g
o y .\ ,7
m [ssue 7326: Performance degrad e "7é,7./7 /"@”io,. te, .
. S g
s 7g7. /”Or r "
A Fupn ﬂaZCbZ yjfbf 3];
e, s, () S.'%’n
yg:sinternalss er pa.rseMaPPi"gs . /“@ a”’@ \/’,e/flor { t@/‘ *
xsourceMapConsie o tuhﬁ () [J/[t/7 7 3] .
Z‘/7 . S s
s *Po
'\/’] ,7(“
n@r S o, e, .
:ect . teratingString"‘asher> at@ J/[t . 4 .
i -'|s‘tlso‘\:\;—.cfa"“ap'--"5:1894 d(7./7@ /) 7S-p -]J
oS ’ f‘/a 07’)
c ::Rec.:o\’d‘"'r:‘tesm ZU@) t@/‘ *
' 7

Fact #4: Bugs are not improving

“The majority of vulnerabilities fixed and with a CVE assigned
are caused by developers inadvertently inserting memory
corruption bugs into their C and C++ code.”

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019

Facts of modern software development

1. Developers are mostly comprehending/debugging code
2. Software ecosystems are growing in complexity
3. CPU hardware performance is stalling

4. Bugs aren't getting any better

1. How did we get here?

2.What is the way out?

Alan Turing Alonzo Church

“On Computable "A set of postulates for the
Numbers” 1937 foundation of logic”, 1932

T =y

z—y
z =y

T =y

Lambda calculus

|z =y

yA = 2

Az. X =Az.y

[Ay. zy =y . yy

z—ylx(Ax. x) =y(Az. x)

T — Y
T — Y]
T — Y|
[Ay. zy

r—ylx(Ax. x)

T =y

Lambda calculus

L

%
ANZ.X

=Y
= Z
=AZ.Y
=2y . yy
=y(Az.2z) _ .
Turing machines
erase X 1:1 halt
#:#
#:1

John Backus,
“History of FORTRAN" 1978

John Backus,
“History of FORTRAN" 1978

Prior to FORTRAN, most source language operations
were not machine operations. Large inefficiencies in
looping and computing addresses were masked by
time spent in floating point subroutines.

The advent of the 704 with built-in floating point
and indexing radically altered the situation. ...It
increased the problem of generating efficient
programs by an order of magnitude by speeding up
floating point operations by a factor of ten and
thereby leaving inefficiencies nowhere to hide. This
caused us to regard the design of the translator as
the real challenge, not the simple task of designing
the language.

Alan Perlis,

“The American Side of the
Development of Algol” 1978

Algol introduced into programming languages
such terms as type, declaration, identifier, for
statement, while, if then else, switch, the begin
end delimiters, block, call by value and call by
name, typed procedures, declaration scope,
dynamic arrays, side effects, global and local
variables.

Algol was strongly derived from FORTRAN and its
contemporaries. The logic, arithmetic and data
organizations were close to those then being
designed into real computers. Certain simple
generalizations of computer instructions such as
switch, for statement, and if statements were
included because their semantics and computer
processing were straight-forward consequences of
single statement processing.

Ken Thompson,
Dennis Ritchie

“The Development of
the C Language” 1993

C fits firmly in the traditional procedural family typified
by Fortran and Algol 60. It is ‘close to the machine’ in
that the abstractions it introduces are readily grounded
in the concrete data types and operations supplied by
conventional computers.

The most important [historical accident] has been the
tolerance of C compilers to errors in type. C evolved from
typeless languages. It did not suddenly appear to its
earliest users as an entirely new language with its own
rules; instead we continually had to adapt existing
programs as the language developed, and make
allowance for an existing body of code.

Kristen Nygaard and Ole-Johan Dahl

“The Development of SIMULA
Languages®, 1978

Our first main task was to carry out resonance absorption calculations related to
the construction of Norway's first nuclear reactor. Monte Carlo simulation methods
were successfully introduced instead in 1949-1950. The necessity of using
simulation and the need of a lanqguage for system description was the direct
stimulus for SIMULA.

When writing simulation programs we had observed that processes often shared a
number of common properties, both in data attributes and actions, but were
structurally different in other respects so that they had to be described by separate
declarations. Such partial similarity fairly often applied to processes in different
simulation models, indicating that programming effort could be saved by
somehow preprogramming the common properties.

Bjarne Stroustrup

“A History of C++:
1979-1991", 1993

[Simula’s] class concept allowed me to map my
application concepts into the language constructsin a
direct way. The way Simula classes can act as coroutines
made the inherent concurrency of my application easy
to express.

The implementation of Simula, however, did not scale
in the same way and as a result the whole project came
close to disaster. The cost arose from several language
features and their interactions: run-time type checking,
guaranteed initialization of variables, concurrency
support, and garbage collection of both user-allocated
objects and procedure activation records.

Sun Microsystems, 1997

The team originally considered using C++, but rejected it for several
reasons. They decided that C++'s complexity led to developer errors. The
language's lack of garbage collection meant that programmers had to
manually manage system memory, a challenging and error-prone task.
The team also worried about the C++ language's lack of portable

facilities for security, distributed programming, and threading. Finally,
they wanted a platform that would port easily to all types of devices.

- Wikipedia??

Guido van Rossum

“The Making of
Python”, 2003

My initial goal for Python was to serve as a second
language for people who were C or C++ programmers,
but who had work where writing a C program was just
not effective.

Maybe it was something you'd do only once. It was the
sort of thing you'd prefer to write a shell script for, but
when you got into the writing details, you found that
the shell was not the ideal lanquage-you needed more
data structures, more namespaces, or maybe more
performance. The first sound bite | had for Python was,
"Bridge the gap between the shell and C."

Turing languages

1957 - FORTRAN
1959 - ALGOL
1962 - SIMULA

1972 -C

1979 - C++

1991 - Python
1995 - Java

My own research in artificial intelligence [in
1958]... involved representing information
\? about the world by sentences in a suitable
~ formal language and a reasoning program that
would decide what to do by making logical
inferences. Representing sentences by list
structure seemed appropriate and a list-
processing language also seemed appropriate
for programming the operations involved in
deduction.

...0ne needs a notation for functions, and it
seemed natural to use the A-notation of Church
(1941). 1 didn't understand the rest of his book,
so | wasn't tempted to try to implement his more
general mechanism for defining functions.

John McCarthy,
“History of LISP" 1978

Peter Landin,

“The Next 700
Programming
Languages” 1966

The languages people use to communicate with
computers differ in their intended aptitudes, towards
either a particular application area, or a particular phase
of computer use (high level programming, program
assembly, job scheduling, etc). The question arises, do
the idiosyncrasies reflect basic logical properties of the
situations that are being catered for? Or are they
accidents of history and personal background that may
be obscuring fruitful developments?

ISWIM is an attempt at a general purpose system for
describing things in terms of other things, that can be
problem-oriented by appropriate choice of “primitives."
A possible first step in the research program is 1700
doctoral theses called "A Correspondence between x and
Church's A-notation.”

Robin Milner,

“A Metalanguage for
Interactive Proof in LCF”
1978

The principal aims in designing ML were to make
it impossible to prove non-theorems yet easy to
program strategies for performing proofs.

A strategy-or recipe for proof-could be something
like “induction on fand g, followed by assuming
antecedents and doing case analysis, all
interleaved with simplification”. This is imprecise-
analysis of what cases? what kind of induction,
etc, etc.-but these in turn may well be given by
further recipes, still in the same style.

Hudak et al.

“A History of Haskell:

Being Lazy with Class”
2007

The simplicity and elegance of functional programming captivated the
present authors. Lazy evaluation- with its direct connection to the pure, call-
by-name lambda calculus, the remarkable possibility of representing and
manipulating infinite data structures, and addictively simple and beautiful
implementation techniques-was like a drug.

Turing languages

1957 - FORTRAN
1959 - COBOL, ALGOL
1962 - SIMULA

1972 - C, Smalltalk

1979 - C++

1991 - Python
1995 - Java

Church languages

1959 - LISP
1966 - ISWIM

1972 - Prolog

1978 - ML

1990 - Haskell

Church languages are intimidating

Functor

/

'

Comonad Applicative

\

Semigroup

'

..............

Monoid | @«coreeree s Category

L
e,

Alternative

Foldable

Monad

Traversable

Arrow M ArrowZero

- ArrowPlus

Couldn't match type k@' with "b'

the type signature for

MonadFix MonadPlus ArrowApply ArrowChoice ArrowLoop
because type variable b' would escape its scope
This (rigid, skolem) type variable is bound by
Ord b => (a —=> b) —> Set a —> Set (b, [al)

groupBy ::

The following variables have types that mention k@

PL theory can be really dense

>0; 't FA=D 0 : Set, F:F1(XZA)F2
data D A : Set, where ¢; A; [ji | bi] € Xo k. [jx | be] # ||

(Aj=Ai(i:D[o/A] qi=Alji|bilo/A])
pi=1p, Wicigi/x] p;=pi¥lr,

©; = BOUNDARY(j;); ©
\ Xi—1; 1A (Tepi) Ffgpl:=Q; : Cpl | ©; ~> X;)

i=1...n

Apc = (r:I)(u: 1 — Partial r (D0))(ug : Do [r—ui0])

phe = I, W hcomp r u ugy / x] p = pnc W1,
Yn; P1Anc(Lapne) F fg@p] == 0ne :Cp] | (r=1);0~ X,

_ _ C1q1 Q15-+.3¢n Gn > Oy .
Yo; I'Ffq:= Casex{ hcomp 1 g > O }.C|@~>Zn+1

Vezzosi et al. “Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types” ICFP 19

Thesis:

Ideas from Church languages will radically
improve how we 1) think, 2) communicate,

and 3) program in software design.

Corollary:

Learning these ideas gives you a
programming superpower to make correct
and reliable software way more productively.

Von Neumann languages (e.g., the FORTRANS, the ALGOLs) constantly
keep our noses pressed in the dirt of the separate computation of single
words, whereas we should be focusing on the form and content of the
overall result. We regard the DO, FOR, WHILE statements and the like as
powerful tools, whereas they are in fact weak palliatives that are necessary
to make the primitive von Neumann style of programming viable at all.

... While it was perhaps natural and inevitable that languages like
FORTRAN and its successors developed out of the von Neumann computer,
that such languages have dominated our thinking for twenty years is
unfortunate. Their long-standing familiarity will make it hard for us to
understand and adopt new programming styles which one day will offer
far greater intellectual and computational power.

- John Backus, “The history of FORTRAN I, II, and 1lI", 1978

fun innerproduct(a, b, n):

c :=0

for i := 1 step 1 until n do
Cc :=c + alil % b[il]

return C

o Statements operate on invisible state

e Computes word-at-a-time by repetition of assignment/modification
e Requires names for arguments, iterator, return value

let innerproduct = zip |> (map %) |> (reduce +)

e Built from composable functions (map, reduce, pipe)

e QOperates on whole conceptual units (lists), no repeated steps
* No names for arguments or temporaries

Tackling complexity through modularity

Modular design is the key to successful programming. When writing a modular
program to solve a problem, one first divides the problem into subproblems,
then solves the subproblems, and finally combines the solutions.

The ways in which one can divide up the original problem depend directly on
the ways in which one can glue solutions together. Therefore, to increase one's
ability to modularize a problem conceptually, one must provide new kinds of

glue in the programming language.

- John Hughes, "Why Functional Programming Matters” 1989

fun innerproduct(a, b, n):

c := 0

for 1 :

C =
return

let innerproduct

C
C

1 step 1 until n do

+ al[il * b[i]

zip |> (map *)

|> (reduce +)

Python def innerproduct(a, b):

typedef struct { floatx arr; ... } vec_t;
C float innerproduct(vec_t a, vec_t b)

public class Vec<T> {
Java public T innerproduct(Vec<T> other);
I3

|driS innerproduct : Vec n a => Vec n a —> a

inal
ming:-
re o y
languages a e comt”
Church 9! :

Java

—> .Uli.il
J
R

ith types)
1i=' (wit
A —

Companies are realizing FP benefits

Messenger used to receive bugs reports on a daily basis; since the introduction
of Reason, there have been a total of 10 bugs (that's during the whole year, not
per week)! Refactoring speed went from days to hours to dozens of minutes.

- “Messenger.com Now 50% Converted to Reason” 2017

Being able to encode constraints of your application in the type system makes
it possible to refactor, modify, or replace large swaths of code with confidence.
Rust's error model forces developers to handle every corner case. [Our system]
needs very little attention. We were able to leave it running without any issues
through the holiday break.

- “Rust at OneSignal” 2017

Formal verification is around the corner

val aes_ctr_encrypt_bytes:
vivariant
—> key:aes_key v
-> n_len:size _nat{n_len <= 16}
—> nonce: lbytes n_len
—> Cc:Sl1lze_nat
—> msg:bytes{length msg / 16 + ¢ <= max_size_t} —>
Tot (ciphertext:bytes{length ciphertext == length msg})

Performance of various verified symmetric crypto / hash implementations

7 Vale AES-GCM-128 : Fa Ste St
-------------------------------- = -—---1----1 OpendSL

6 |
I assembly
]
5 | code
I = el e —_— S e e J
4
v
-l
o0
O
3
2
Jasmin ChaCha20 + Poly1305
Vale AES-GCM-128
¢
HACL* ChachaPol
1 Vale AES-CBC+Poly1305 el \
Andrew Appel SHA256 9
Ironclad Apps SHA256 ke L d
¢
0 N)
2013 2014 2015 2016 2017 2018 2019 2020

Year

Takeaway points

* The software world is ready for better languages
- The languages we use today have barely changed in 60 years
- Developer spending 5% time writing code
- Huge, buggy, slow software ecosystems

e Church lanquages focus on mathematics of programming

- Advanced type systems and functional features promote modularity,
specification, and verification

- Not mainstream due to inefficiencies, lack of application focus

e The future is functional

- Better compilers, better understanding of which concepts matter in
practice, better awareness are moving Church languages to mainstream

Key concepts and skills: theory

* Formal representation of and reasoning about programs
- Descriptions of syntax and semantics of languages
- Mathematical specification of program behavior (type systems)
- Inductive proofs about programs and languages
- Formal model of both functional and imperative languages

* You should be able to...
- Learn more advanced PL theory
- Read basic PLtheory papers (and understand them)
- Understand the essence of basic computational concepts

Key concepts and skills: practice

* Functional programming techniques
- Explicit state-passing with expression-oriented programming
- Abstract patterns with higher-order functions
- Error handling and inductive data with algebraic data types
- Generic/modular programming with polymorphism and traits
- Resource management/concurrency with linear types
- Verified communication with session types

* You should be able to...
- Structure low-level code to avoid large classes of bugs
- Learn new functional programming languages more effectively

- Recognize opportunities for Church programming in Turing languages
o "Will, I feel guilty now every time | write a for loop” - CURIS student in my office for the summer

Course prerequisites

* Theory: CS 103

- First-order logic, induction, discrete math
- Strongly encouraged

 Systems: CS 107 + 110
- 107 absolutely
- 110 for a bit of the multithreading

Course logistics

* Weekly assignments
- Get started early!
- Mixture of written problems and programming problems
- Expect 15 hr/week including lecture

 No midterm, take-home final exam
- Assignments are more work to compensate

o Everything available on course website
- €¢s242.stanford.edu
- Including detailed lecture notes and slides

http://cs242.stanford.edu

Attending lectures

* Yes, everything is recorded through SCPD

- Yes, you can watch everything from your sofa

* | still recommend you come to class!
- Put yourself in a learning environment
- | will always give time for thought and questions

e ...But no laptops
- Don't distract people if you're going to attend lectures

