
Lambda calculus
While the arithmetic language we looked at last time was a useful device for introducing the PL metalanguage, it’s

simultaneously not that interesting (only does arithmetic) and is surprisingly complex (three different syntactic

constructs, required an external theory of arithmetic to define evaluation). Today, we’re going to look at a simple

yet powerful language called the lambda calculus.

Examples

First, I’ll show you what the lambda calculus looks like by example, and then we can work through its formal

syntax/semantics. The lambda calculus is a programming language with three ideas: functions, function

application, and variables. That’s it! No numbers, strings, for loops, modules, and so on. Here’s an example

function.

The first symbol is the greek letter “lambda” (hence the name), which means “function”. The first is a variable

which is the argument to the function, followed by a dot, then the body of the function, which in this case just

returns the input . In Javascript, this would equivalently be function(x) { return x; } . Functions can be nested,

e.g.

You can read this as: a function that takes an input , then returns a function that takes an input , then calls the

function with the argument (written as x(y) in most languages). In Javascript, this would be:

function(x) {
 return function(y) {
 return x(y);
 }
}

In the lambda calculus, all functions have one input and one output. For example:

Here, calling a function is equivalent to replacing every instance of the argument variable with the argument

expression, e.g. replacing with in the example above. A few notes on syntactic convention:

1. Function application is left-associative, e.g. is equivalent to as (i.e. not).

2. Function application has higher precedence than function definition, e.g. is equivalent to

 (i.e. not).

Formal specification

Just like we did for the arithmetic language, now we’ll use the PL metalanguage to formally specify the syntax and

semantics of the lambda calculus. First, the grammar:

λ x . x

λ x

x

λ x . λ y . (x y)

x y

x y

↦

↦

↦

(λ x . λ y . x y) (λ z . z) w

(λ y . (λ z . z) y) w

(λ z . z) w

w

x λ z . z

x y z ((x y) z) (x (y z))

λ x . λ y . x y
λ x . (λ y . (x y)) λ x . (λ y . x) y

That’s it! The lambda calculus grammar consists of only three things. Carefully note that here, is a metavariable—

it is a variable, or placeholder, for other variables1. Our operational semantics are similarly simple:

The first rule lays down the iron law of functional programming: functions are values (at my alma mater, we had

jackets enshrining this ideal). An expression of the form cannot be evaluated any further until it has an

argument applied to it. The second rule says: step the left expression until it becomes a function.

The last rule introduces a new construct: substitution. The metasyntax means “substitute all instances

of in with ”.

Substitution

To understand how substitution works, we need to understand the essence of variables in the lambda calculus. The

basic intuition can be summarized as, given the following expression:

Which argument does the innermost refer to? Does evaluate to or ? The short answer is

, and the slightly longer answer is “because that’s how substitution works.” This view of the world is called lexical

scope.

When a variable is used in an expression under a function with a variable of the same name, then the variable is

bound. For example, in , the inner variable is bound to the function argument . In contrast, if a variable

is not bound, then it is free, e.g. in . A variable usage binds to the closest argument in its enclosing

functions. So above, we would say the inner argument “shadows” the outer argument . Hence, the function is

logically equivalent to:

This idea is called “alpha-equivalence”, where two functions are equivalent up to a renaming of bound variables,

written as:

Although the functions are not literally the same syntax, they are effectively the same function since they will

evaluate the same way. The substitution operation then is to replace all free variables in with .

Here’s a few examples:

Read each example closely, as it exhibits a different kind of behavior. In particular, note that in the fourth example,

the function argument had to be renamed to preserve the proper semantics. If this seems a little complicated, it is

Expression e ::=

∣

∣

x

λ x . e

 e1 e2

variable

function definition

function application

x

(D-Lam) (D-App) (D-App)
λ x . e val

↦e1 e′
1

 ↦ e1 e2 e′
1 e2

1
(λ x .) ↦ [x →] e1 e2 e2 e1

2

λ x . e
e1

[x →] e2 e1

x e1 e2

λ x . λ x . x

x x (λ x . λ x . x) y z y z

z

λ x . x x x

y λ x . y
x x

λ x . λ y . y

λ x . λ x . x λ x . λ y . y≡α

[x →] e2 e1 x e1 e2

[x → y] x

[x → y] z

[x → y] λ z . x

[x → y] λ y . x y

[x → y] x (λ x . x)

= y

= z

= λ z . y

= λ . y y ′ y ′

= y (λ x . x)

https://twitter.com/jeanqasaur/status/989578047757185025
https://en.wikipedia.org/wiki/Variable_shadowing

—name resolution is a hard (and underappreciated!) problem. Alternative variable schemes like de Bruijn indices

have been proposed to avoid these kinds of issues.

Finally, this brings us back to function application. Recall the rule from above:

We can now read this as: to apply an argument to a function , replace all free variables in with .

With that, we have a full definition of the semantics for the lambda calculus. Huzzah!

Stuck states

Our semantics still have some odd edge cases we need to address. Remember that it’s desirable for our semantics to

reduce expressions until they are irreducible (values or errors, usually). Last time, in the context of our arithmetic

language, every expression in the language could be reduced to a value or an error (we did not prove it, but it’s

true). However, consider a lambda calculus expression consisting of a single free variable, e.g. . Is this a value? No,

only functions are values. Is this reducible? No, we never defined a semantics for plain free variables.

Instead, we would say the expression is in a “stuck state.” It is neither a value, nor do any semantics apply. Note

that this is different from the state before—there, we explicitly defined a rule that said what constituted an

error (divide by 0), whereas here, being stuck is implicitly defined by not having any applicable rules.

This is simply the way of life in the lambda calculus. It’s easy to accidentally produce expressions that will end up

in a stuck state, like

This is very similar to the notion of undefined behavior in languages like C, except instead of choosing continue

execution with arbitrary semantics (e.g. we could say “replace every free variable in a stuck state with ”),

we choose to throw our hands in the air and say “can’t do anything else, not my problem.”

A smart question to ask at this point: can we identify expressions that are going to be stuck ahead of time, and flag

them before they ever run? The short answer is no, and the long answer is “because of the Halting Problem.” You

may ask, but isn’t the Halting Problem defined over Turing machines, not the lambda calculus? Turns out they’re

computationally equivalent. You’ll work through why on the homework.

That said, the point of solving this problem, of avoiding stuck states, is the purpose of type systems (which we will

explore next week). A type system is a tool for constructing proofs that a program will run “safely” (to be defined),

and we can define these proofs without ever running the program.

Distilling abstraction

So why are we talking about the lambda calculus, anyway? It’s obviously not a language anyone would seriously use

in a real world context. If we’re supposed to bridge our theory to real world systems, this doesn’t seem like a strong

start.

The key idea is that the lambda calculus is an aggressively simple model of computation that is still surprisingly

powerful. Just take a look at the formal definition of a Turing machine. They have a head, a tape, a state machine,

an alphabet, you name it. That’s a lot of complexity when you could just use functions! This simplicity lends two

benefits:

1. Distilling the essence of functions.

(D-App)
(λ x .) ↦ [x →] e1 e2 e2 e1

2

e2 λ x . e1 x e1 e2

x

x

err

(λ x . x) z

(λ x . x)

http://willcrichton.net/notes/specificity-programming-languages/
https://en.wikipedia.org/wiki/De_Bruijn_index
http://web.stanford.edu/class/cs103/lectures/23/Slides23.pdf
https://en.wikipedia.org/wiki/Turing_machine#Formal_definition

A function is a critical computational concept in any programming language, since it is the basis of abstraction:

taking something concrete, like , and making it abstract, like . Just as in normal mathematics, a

function in the lambda calculus is beautifully simple: one input, one output, and a function call just replaces its

argument variable with its argument expression.

However, in practice, programming languages often weight down their functions with extra “features.” Most

languages have some baked-in idea that a function takes multiple arguments, and that a function can optionally

return a value, like:

void f(int a, int b) { .. }

Some languages then have “multiple returns” as a feature, or named parameters, or default parameters. Nearly

every language has recursion built-in to functions. By contrast, in the lambda calculus, each of these ideas is

embodied by extending the language with a new and orthogonal concept2. For example, consider multiple function

arguments. If we extend our lambda calculus with a concept of tuples, then we could just as easily write something

like (reversing a pair):

By separating tuples from functions, we’ve done three things.

1. Increased the expressive power of our language. We can use tuples anywhere, not just functions!

2. Increased the clarity of our language. Rather than have certain features only work with certain other ones,

tuples can be used uniformly/consistently across the language, not just with functions.

3. Minimally increased complexity of analysis. If we had some previous code analyzing functions, then that code

doesn’t need to change to consider a function with multiple arguments, it just needs to separately understand

the idea of tuples.

2. Providing a basis for program analysis.

When trying to define a new kind of programming language feature, it is convenient to place it in the context of

the simplest language possible. For example, if I had a great idea on a new kind of communication protocol, I could

define it in C. But to then analyze my idea and prove something like “this protocol will never segfault” would

require understanding my idea’s interaction with everything in the C standard—recall from the first lecture why

this is terrifying.

Instead, the PL theory community mostly uses the lambda calculus as a basis for research. I randomly selected a

few preprints from the latest proceedings of POPL, the premier PL theory conference, and you can see the lambda

calculus underpinnings: section 3.1, section 2, section 3.1.

In this class, we will look at some basic PL theory extending from the lambda calculus. This should hopefully equip

you to more effectively dive deeper into academic PL if you should so choose.

1. You may notice that we did not define a grammar rule for —in general, we’re assuming variables syntactically follow

the same conventions as normal mathematics. Here, they will always be one letter and always italicized. ↩

2. “Extending” the language doesn’t necessarily mean changing the grammar or the semantics, this could just be adding new

concepts as libraries within the language. You’ll see this in the context of the lambda calculus on Assignment 1. ↩

1 + 2 λ n . 1 + n

λ (a, b) . (b, a)

Variable x

https://popl18.sigplan.org/track/POPL-2018-papers#program
https://infoscience.epfl.ch/record/232427/files/%5Bv.2.10%5D%20qq_unif_popl18.pdf
https://williamjbowman.com/resources/cps-sigma.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

