The Future of
Programming Languages

Will Crichton
CS242-11/28/18



Thesis:

The future of performance optimization is better
programming models, not better optimizers.



Thesis:

programming lanqguages
The future of pelc&rmaneeepnmlzahon is better

programming models, not better eptimizess.

compilers
program analyzers

runtimes



Hypothesis:

To build better programming models for people,
we need better models of people programming.



Importance of cognition is well-known

The large number of people engaged in this work, as well as the complexity of the
task itself should make programming behavior of considerable interest to cognitive
psychology. Indeed, though significant quantities of programmers have been available
for only the past 10 years, researchers have been quick to turn their attention to cog-
nitive aspects of programming, and a small, but growing body of studies now exists. As

Ruven Brooks. “Towards a theory of the cognitive processes in computer programming.” 1977

It is also the case that learning to program is going to be an increasingly
important goal in our society. Thus, understanding its acquisition will have
enormous educational impact. The issue of training novel, complex, and
technical skills is @ major one for our ‘‘high-tech’’ society with its need to
retrain a large fraction of the work force. This retraining will not always be
in programming, but in studying programming we are addressing issues im-
portant to many technical skills.

John Anderson et al. “Learning to Program in LISP." 1984
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Existing work is hard to generalize

Of the controlled experiments, only three show an effect large
enough to have any practical significance. ... Unfortunately,
they all have issues that make it hard to draw a really strong

conclusion.

In the Prechelt study, the populations were different between
dynamic and typed languages, and the conditions for the
tasks were also different. There was a follow-up study that ...
literally involves comparing code from Peter Norvig to code
from random college students.

Dan Luu. “Static v. dynamic languages.” 2015



Hypothesis:

Two main paths forward: large-scale analysis,
and more rigorous cognitive science.



Survey says: PL features matter least
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Figure 5: Importance of different factors when picking a language. Self-reported for every respondent’s last project. Bars
show standard error. E = Extrinsic factor, I = Intrinsic, M = Mixed. Shows results broken down by company size for respondents
describing a work project and who indicated company size. (Slashdot, n = 1679)

Meyerovich et al. "Empirical Analysis of Programming Language Adoption”. 2013



Survey says: Java is as hard as JS
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Figure 7: Median reported speed of language acquisition.
Bars are standard error. (Slashdot, n = 1679)

Meyerovich et al. "Empirical Analysis of Programming Language Adoption”. 2013



Deep knowledge tracing at scale
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Wang et al. “Deep Knowledge Tracing on Programming Exercises.” 2017



Metacognition in CS education
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Loksa et al. “Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance”. 2016



Subvocalization for tracking cognition
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Figure 3. EMG and Programming events over 13 minutes of activity.

Chris Parnin. "Subvocalization — Towards Hearing the Inner Thoughts of Developers”. 2011



Programming is ... about the iterative
process of refining mental representations of
computational problems and solutions and
expressing those representations as code.

Loksa et al. “Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance”. 2016



Programmers accumulate knowledge
about their programs over time

 Programming a new system is touch-and-go
- Don't know what the types should be, data schemas rapidly evolved
- Code may be partially broken, but those paths won't be tested
- "Almost right” is better than a compiler error

e Once you are more confident with types, write them down
- And have the compiler enforce them

 Once you hit a bottleneck, add performant code
- Manage memory yourself, don't rely on the garbage collector



Taxonomy of modern GPPLs

Automatic memory management

Lua Ruby
JavaScript Python

Java C# OCaml

Go Swift
Fewertypes Scripting languages | ??? languages More types

Assembly languages
WASM

x86 LLVM C
Manual memory management

“Systems” languages  Rust
C++



Fibonacci: Lua

function fib(n)

if n == 0 or n == 1 then
return n
else
return fib(n - 1) + fib(n = 2)

end



Fibonacci: OCaml

let rec f1ib

(n : any) : any =
let n : 1int
| |

= Obj.magic n 1in
1f n = n = 1 then
n
else
Obj.magic (fib (Obj.magic (n — 1))) +
Obj.magic (fib (Obj.magic (n = 2)))



Fibonacci: Rust

fn fib(n_dyn

: Rc<Any>) —> Rc<Any> {

let n_static: &132 =
n_dyn.downcast_ref::<i32>().unwrap();

if *n_static == 0 {
Rc::new(Box::new(xn_static))

} else {
let n1 = fib(Rc::new(Box::new(n static - 1)));
let n2 = fib(Rc::new(Box::new(n_ static - 2))):
Rc: :new(

nl.downcast_ref::<i32>().unwrap() +
n2.downcast_ref::<i32>().unwrap())



Key difference is static analysis

» What distinguishes languages is the level of static analysis
- Plus facilities for checking non-inferrable/annotatable info at runtime
- Tier 1 ("scripting”): runtime types and memory
- Tier 2 ("functional”): static types, runtime memory
- Tier 3 ("systems”): static types and memory

o It's "easy” to defer static checks to runtime, but conceptual/
syntactic overhead increases
- Rc<T> and Any in Rust
- Obj.magicin OCaml|



We need solutions to permit gradual
migration from one to the other



Gradual typing crosses the type barrier

function greeter(person: string) {
return "Hello, " + person;

Iy
let user = [0, 1, 2];
document.body.innerHTML = greeter(user);

Re-compiling, you'll now see an error:

error TS2345: Argument of type 'number[]' is not assignable to parameter of type 'stri

ng'.
From Python... ...to statically typed Python
def fib(n): def fib(n: int) -> Iterator[int]:
a, b=20, 1 a, b=20,1
while a < n: while a < n:
yield a yield a

a, b =>b, at+b a, b =0>b, atb



Gradual memory management?

 No easy way to mix memory management solutions
- C++/Rust make it possible to mix reference counting and lifetimes
- But with heavy syntactic overhead

* Lua virtual stack solved this problem, but not easily

* Little/no published research here—open problem!



Issues in gradual systems

* Debuggability and blame

- How do we know whether a value has had its type inferred or deferred?
(Likely need to investigate IDE integration)

- If an error occurs, what's the source of the cause? (Who's to blame?)

- Broadly: when the compiler makes a decision for us, we need to
understand that decision

* Performance

- "Is Sound Gradual Typing Dead?" - 0.5x - 68x overhead relative to
untyped code

- No existing systems take advantage of potential perf benefits



Takeaways

* Understand the human to build better programming
models

* Gradual programming is a promising PL technique that
matches the human programming process



