
The Future of  
Programming Languages

Will Crichton 
CS 242 — 11/28/18

Thesis:

 
The future of performance optimization is better
programming models, not better optimizers.

Thesis:

 
The future of performance optimization is better
programming models, not better optimizers.

programming languages

compilers
program analyzers
runtimes

Hypothesis:

 
To build better programming models for people,
we need better models of people programming.

Importance of cognition is well-known

Ruven Brooks. “Towards a theory of the cognitive processes in computer programming.” 1977

John Anderson et al. “Learning to Program in LISP.” 1984

Of the controlled experiments, only three show an effect large
enough to have any practical significance. … Unfortunately,
they all have issues that make it hard to draw a really strong
conclusion.

In the Prechelt study, the populations were different between
dynamic and typed languages, and the conditions for the
tasks were also different. There was a follow-up study that …
literally involves comparing code from Peter Norvig to code
from random college students.

Existing work is hard to generalize

Dan Luu. “Static v. dynamic languages.” 2015

Hypothesis:

Two main paths forward: large-scale analysis,
and more rigorous cognitive science.

Meyerovich et al. “Empirical Analysis of Programming Language Adoption”. 2013

Survey says: PL features matter least

Survey says: Java is as hard as JS

Meyerovich et al. “Empirical Analysis of Programming Language Adoption”. 2013

Deep knowledge tracing at scale

Wang et al. “Deep Knowledge Tracing on Programming Exercises.” 2017

In this paper, we contribute an approach to
promoting metacognitive awareness in
introductory programming settings and
investigate its effects on help requests,
productivity, self-efficacy, and growth mindset.

Programming is not merely about language
syntax and semantics, but more fundamentally
about the iterative process of refining mental
representations of computational problems and
solutions and expressing those representations
as code.

Metacognition in CS education

Loksa et al. “Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance”. 2016

Subvocalization for tracking cognition

Chris Parnin. “Subvocalization — Towards Hearing the Inner Thoughts of Developers”. 2011

Programming is … about the iterative
process of refining mental representations of
computational problems and solutions and
expressing those representations as code.

Loksa et al. “Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance”. 2016

• Programming a new system is touch-and-go

- Don’t know what the types should be, data schemas rapidly evolved

- Code may be partially broken, but those paths won’t be tested

- “Almost right” is better than a compiler error

• Once you are more confident with types, write them down

- And have the compiler enforce them

• Once you hit a bottleneck, add performant code

- Manage memory yourself, don’t rely on the garbage collector

Programmers accumulate knowledge
about their programs over time

More typesFewer types

Automatic memory management

Manual memory management

Python
Lua Ruby

JavaScript

C
C++

Go
Java OCaml

Rust

x86

C#
Swift

LLVM

Taxonomy of modern GPPLs

Assembly languages

Scripting languages

“Systems” languages

??? languages

WASM

Fibonacci: Lua

function fib(n)
 if n == 0 or n == 1 then
 return n
 else
 return fib(n - 1) + fib(n - 2)
end

Fibonacci: OCaml

let rec fib (n : any) : any =
 let n : int = Obj.magic n in
 if n = 0 || n = 1 then
 n
 else
 Obj.magic (fib (Obj.magic (n - 1))) +
 Obj.magic (fib (Obj.magic (n - 2)))

Fibonacci: Rust

fn fib(n_dyn: Rc<Any>) -> Rc<Any> {
 let n_static: &i32 =

n_dyn.downcast_ref::<i32>().unwrap();
 if *n_static == 0 {
 Rc::new(Box::new(*n_static))
 } else {
 let n1 = fib(Rc::new(Box::new(n_static - 1)));
 let n2 = fib(Rc::new(Box::new(n_static - 2)));
 Rc::new(
 n1.downcast_ref::<i32>().unwrap() +
 n2.downcast_ref::<i32>().unwrap())
 }
}

• What distinguishes languages is the level of static analysis

- Plus facilities for checking non-inferrable/annotatable info at runtime

- Tier 1 (“scripting”): runtime types and memory

- Tier 2 (“functional”): static types, runtime memory

- Tier 3 (“systems”): static types and memory

• It’s “easy” to defer static checks to runtime, but conceptual/
syntactic overhead increases

- Rc<T> and Any in Rust

- Obj.magic in OCaml

Key difference is static analysis

We need solutions to permit gradual
migration from one to the other

Gradual typing crosses the type barrier

• No easy way to mix memory management solutions

- C++/Rust make it possible to mix reference counting and lifetimes

- But with heavy syntactic overhead

• Lua virtual stack solved this problem, but not easily

• Little/no published research here—open problem!

Gradual memory management?

• Debuggability and blame

- How do we know whether a value has had its type inferred or deferred?

(Likely need to investigate IDE integration)

- If an error occurs, what’s the source of the cause? (Who’s to blame?)

- Broadly: when the compiler makes a decision for us, we need to

understand that decision

• Performance

- “Is Sound Gradual Typing Dead?” - 0.5x - 68x overhead relative to

untyped code

- No existing systems take advantage of potential perf benefits

Issues in gradual systems

• Understand the human to build better programming
models

• Gradual programming is a promising PL technique that
matches the human programming process

Takeaways

