
Performance
Will Crichton 

CS 242 — 11/26/18

1. What programs need to be efficient?

2. How do we know if programs are efficient?

3. How can we make programs efficient?

Key questions of performance

• 32 KB of memory

• 1 MHz CPU

• 100 KB floppy disks

• $5000+ (w/ inflation)

Resource limits in 1975

Apple II

The average programmer always has to
care about performance.

Extreme end: game development
Games were mostly engineered in a “data-oriented” way out of
sheer necessity. There is not much room for abstraction when
your target console has 128KB of RAM (SNES).

Every byte of storage is precious, so mostly games from this
era are designed with very predictable manually managed
layouts for their entire game state in memory. In the NES /
SNES era, there was so little memory that generally the
graphical representation of your game (tiles, sprites) and the
logical representation of your game are the same,

In Mario 64, the entity structures are all exactly 608 bytes long,
and there is a hard limit to 240 of them.

Kyren, RustConf 2018 keynote

• 3 GHz processor

• 32+ GB of RAM

• GPU (1+ teraflop/s)

• 1 terabyte of disk

Resource limits today

The average programmer rarely has to
care about performance.

• 1975: rise of systems languages

- Efficiency first: we don’t have enough resources, carefully build a system

• 1995: rise of scripting languages

- Productivity first: systems languages are too hard (and we have the

resources), so quickly glue together a system

• 2015: rise of functional languages

- Correctness first: scripting languages are too buggy, we need to know if

our system works

PL paradigms throughout history

Latency: visual applications

Latency: data transfer

Latency: media processing

Hasinoff et al. “Burst photography for high dynamic range and low-light imaging on mobile cameras”. SIGGRAPH 2016

Throughput: big data analytics

Huge perf gap for most programs

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009

Throughput: simulation

OpenAI. “Learning Dexterity”. 2018

Resource usage: memory

700 MB!

3 GB!!!

• Perf, cProfile, etc. are rarely taught in school

• Debuggers are great, but a lot of profiling can be pretty
close to “printf debugging”

• A lot more work to do here!

• (Claim: “Profiling”, “Debugging” should be required
courses in any CS curriculum.)

Performance profiling is a dark art

How to improve program performance:

1. Change the program

2. Change the programmer

• Promise of automatic optimizers: don’t worry about
performance, we’ll take care of everything

• Type checks, memory management, parallelization

• Issue is consistency

Automatic optimization

Algebraic simplification

Register allocation

Stanford CS 143 “Compilers”

• Runtime profiling to identify hot spots in code

• Execute compiler during runtime

• Swap in compiled code for runtime code

• Monomorphization for dynamically typed code

Hot loop compilation

Virtual method call optimization

Stanford CS 242, 2016

Virtual method call optimization

Stanford CS 242, 2016

Javascript V8 JIT

Alen Stojanov. “Vectorization with LMS: SIMD Intrinsics.” 2017

Auto-vectorization

Matt Pharr. “The story of ispc”. 2018

Auto-vectorization is not a
programming model!

Thesis:

 
The future of performance optimization is better
programming models, not better optimizers.

Parallel processing of large datasets
with Spark

Word count

Parallel processing of large datasets
with Spark

K-means clustering

Low-level optimization of image
processing with Halide

machinelearninguru.com. “Image Filtering”

Low-level optimization of image
processing with Halide

Low-level optimization of image
processing with Halide

Fredo Durand, “High-Performance Image Processing”

Low-level optimization of image
processing with Halide

Fredo Durand, “High-Performance Image Processing”

Efficient DOM updates with React

Domain models aren’t a panacea

The published work on big data systems has fetishized scalability
as the most important feature of a distributed data processing
platform… Contrary to the common wisdom that effective scaling
is evidence of solid systems building, any system can scale
arbitrarily well with a sufficient lack of care in its implementation.

We offer a new metric for big data platforms, COST, or the
Configuration that Outperforms a Single Thread. The COST of a
given platform for a given problem is the hardware configuration
required before the platform outperforms a competent single-
threaded implementation.

Frank McSherry and Derek Murray. “Scalability, but at what COST?” HotOS 2015

Domain models aren’t a panacea

← 16 lines of Rust

• Despite hardware improvements, performance still matters

• Changing the programmer > changing the program

• General optimizations are hard, domain optimizations are
easier

Takeaways

