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1. What programs need to be efficient?


2. How do we know if programs are efficient?


3. How can we make programs efficient?

Key questions of performance



• 32 KB of memory


• 1 MHz CPU


• 100 KB floppy disks


• $5000+ (w/ inflation)

Resource limits in 1975

Apple II



The average programmer always has to 
care about performance.



Extreme end: game development
Games were mostly engineered in a “data-oriented” way out of 
sheer necessity. There is not much room for abstraction when 
your target console has 128KB of RAM (SNES).

Every byte of storage is precious, so mostly games from this 
era are designed with very predictable manually managed 
layouts for their entire game state in memory. In the NES / 
SNES era, there was so little memory that generally the 
graphical representation of your game (tiles, sprites) and the 
logical representation of your game are the same,

In Mario 64, the entity structures are all exactly 608 bytes long, 
and there is a hard limit to 240 of them.

Kyren, RustConf 2018 keynote



• 3 GHz processor


• 32+ GB of RAM


• GPU (1+ teraflop/s)


• 1 terabyte of disk

Resource limits today



The average programmer rarely has to 
care about performance.



• 1975: rise of systems languages

- Efficiency first: we don’t have enough resources, carefully build a system


• 1995: rise of scripting languages

- Productivity first: systems languages are too hard (and we have the 

resources), so quickly glue together a system


• 2015: rise of functional languages

- Correctness first: scripting languages are too buggy, we need to know if 

our system works

PL paradigms throughout history



Latency: visual applications



Latency: data transfer



Latency: media processing

Hasinoff et al.  “Burst photography for high dynamic range and low-light imaging on mobile cameras”. SIGGRAPH 2016



Throughput: big data analytics



Huge perf gap for most programs

Saman Amarasinghe, MIT 6.172 “Performance Engineering”. 2009



Throughput: simulation

OpenAI. “Learning Dexterity”. 2018



Resource usage: memory

700 MB!

3 GB!!!



• Perf, cProfile, etc. are rarely taught in school


• Debuggers are great, but a lot of profiling can be pretty 
close to “printf debugging”


• A lot more work to do here!


• (Claim: “Profiling”, “Debugging” should be required 
courses in any CS curriculum.)

Performance profiling is a dark art





How to improve program performance:


1. Change the program

2. Change the programmer



• Promise of automatic optimizers: don’t worry about 
performance, we’ll take care of everything


• Type checks, memory management, parallelization


• Issue is consistency

Automatic optimization



Algebraic simplification



Register allocation

Stanford CS 143  “Compilers”



• Runtime profiling to identify hot spots in code


• Execute compiler during runtime


• Swap in compiled code for runtime code


• Monomorphization for dynamically typed code

Hot loop compilation



Virtual method call optimization

Stanford CS 242, 2016



Virtual method call optimization

Stanford CS 242, 2016



Javascript V8 JIT



Alen Stojanov. “Vectorization with LMS: SIMD Intrinsics.” 2017



Auto-vectorization

Matt Pharr. “The story of ispc”. 2018





Auto-vectorization is not a 
programming model!



Thesis: 

 
The future of performance optimization is better 
programming models, not better optimizers.



Parallel processing of large datasets 
with Spark

Word count



Parallel processing of large datasets 
with Spark

K-means clustering



Low-level optimization of image 
processing with Halide

machinelearninguru.com. “Image Filtering”



Low-level optimization of image 
processing with Halide



Low-level optimization of image 
processing with Halide

Fredo Durand, “High-Performance Image Processing”



Low-level optimization of image 
processing with Halide

Fredo Durand, “High-Performance Image Processing”



Efficient DOM updates with React



Domain models aren’t a panacea

The published work on big data systems has fetishized scalability 
as the most important feature of a distributed data processing 
platform… Contrary to the common wisdom that effective scaling 
is evidence of solid systems building, any system can scale 
arbitrarily well with a sufficient lack of care in its implementation.

We offer a new metric for big data platforms, COST, or the 
Configuration that Outperforms a Single Thread. The COST of a 
given platform for a given problem is the hardware configuration 
required before the platform outperforms a competent single-
threaded implementation.

Frank McSherry and Derek Murray. “Scalability, but at what COST?” HotOS 2015



Domain models aren’t a panacea

← 16 lines of Rust



• Despite hardware improvements, performance still matters


• Changing the programmer > changing the program


• General optimizations are hard, domain optimizations are 
easier

Takeaways


