CS 242:

Programming Languages

9/24/2018

Course staff

Stephanie

Esther

Today's goals

 Course overview

* Intro to syntax and semantics

Course overview

Problem #1:
What is a programming lanquage?

"Avocabulary and set of grammatical rules for instructing a

computer to perform specific tasks.”
- Fundamental of Programming Languages (Ellis Horowitz)

“A programming language is a notation for writing programs,

which are specifications of a computation or algorithm.”
- Wikipedia

“Programming languages are the medium of expression in the

art of computer programming.”
- Concepts in Programming Languages (John Mitchell)

"A good programming languge is a conceptual universe for

thinking about programming”.
- Alan Perlis

When in doubt: majority vote!

http://etc.ch/PvnC

[m]:74 (=]

[=]

Problem #2:
How do we describe
programming languages?

()
Intel x86 documentation
X, | f 7 1 P .

~

CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed

Signed Doubleword Integer Values

VCVTTPSZ2DQ zmm1 {k1Xz},
zmm2/m512/m32bcst {sae}

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
F30F 5B /r RM | V/V SSEZ2 Convert four packed single-precision floating-point
CVTTPS2DQ xmm1, xmm2/m128 values from xmmZ2/mem to four packed signed
doubleword values in xmm1 using truncation.
VEX.128.F3.0F.WIG 5B /r RM VIV AVX Convert four packed single-precision floating-point
VCVTTPSZDQ xmm1, xmm2/m128 values from xmm2/mem to four packed signed
doubleword values in xmm1 using truncation.
VEX.256.F3.0F.WIG 5B /r RM | V/V AVX Convert eight packed single-precision floating-point
VCVTTPS2DQ ymm1, ymm2/m256 values from ymm2/mem to eight packed signed
doubleword values in ymm1 using truncation.
EVEX.128.F3.0F.WO0 5B /r FV V/V AVX512VL | Convert four packed single precision floating-point
VCVTTPSZDQ xmm1 {k1¥z}, AVX512F values from xmm2/m128/m32bcst to four packed
xmm2/m128/m32bcst signed doubleword values in xmm1 using truncation
subject to writemask k1.
EVEX.256.F3.0F.WO0 5B /r FV VIV AVX512VL | Convert eight packed single precision floating-point
VCVTTPSZDQ ymm1 {k1¥z}, AVX512F values from ymm2/m256/m32bcst to eight packed
ymmZ2/m256/m32bcst signed doubleword values in ymm1 using truncation
subject to writemask k1.
EVEX.512.F3.0F.WO 5B /r FV V/V AVX512F Convert sixteen packed single-precision floating-point

values from zmm2/m512/m32bcst to sixteen packed
signed doubleword values in zmm1 using truncation
subject to writemask k1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converte foirir cainht Ar civieceen nacked cinale-nracicinn flaartina-nnint valiiec in the ecniirce nnerand o folir cicht Ar

0./.9.1 rormail aemnnition o1 resctricCctc

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of main (or the block of
whatever function 1s called at program startup in a freestanding environment).

In what follows, a pointer expression E 1s said to be based on object P if (at some
sequence point in the execution of B prior to the evaluation of E) modifying P to point to
a copy of the array object into which it formerly pointed would change the value of E.!)
Note that ““based” 1s defined only for expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L 1s used to
access the value of the object X that 1t designates, and X 1s also modified (by any means),
then the following requirements apply: T shall not be const-qualified. Every other lvalue
used to access the value of X shall also have its address based on P. Every access that
modifies X shall be considered also to modify P, for the purposes of this subclause. If P
1s assigned the value of a pointer expression E that 1s based on another restricted pointer
object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior 1s undefined.

Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration

110\ Trn nther ssvnarde B Aonende an the vraliie AfF D 14aalf vrathor than Aan the vvaliie Af oan nhieocrt roafaroncead

will highcpu ~/gcc »»» ./cloc-1.78.pl .
81177 text files.
80315 unique files.
4674 files ignored.

github.com/AlDanial/cloc v 1.78 T=92.54 s (827.0 files/s, 121670.8 lines/s)

Language files blank comment code
C 32429 556567 579624 2929550
Ada 5711 277381 368655 783143
C++ 22434 169922 226650 747203
PO File 42 269374 363087 715169
Go 3665 72049 109674 542915
C/C++ Header 3165 123298 162805 522181
; 437 50424 0 414990

142 77080 63019 409052

5376 25125 41675 142157

198 8110 2549 71077

Assembly 585 12706 31134 62206
XML 61 6307 543 46731
Windows Module Definition 150 6171 35 46472
Expect 326 6786 12325 28625
HTML 114 523 29 26936
Objective C 525 4940 3162 16966
Perl 23 1470 2234 14135
> 122 2222 1464 13327
502 1415 4326 11920

ghie et 247 2407 1567 8178
TeX 4 826 3308 6557
Python 27 1669 1815 6199
Pascal 24 1335 6949 5321
MSBuild script 7 1 0 4675
o 21 548 702 3877
Fortran 95 98 898 2412 2600
Raurne Agaérf Shell 20 457 689 2034
C# 9 230 506 879
JSON 4 0 0 384
- 1 56 37 316
O0Caml 1 44 29 285
Standard ML 1 34 28 215
] Lp 4 50 71 193
CMake 1 32 31 186
lex 1 34 30 154
Haskell 38 17 0 122
NAnt script 2 17 0 103
Windows Resource File 3 5 3 96
MATLAB 3 13 0 46
! 1 14 22 32
3 2 9 9

Lisp 1 4 12 8
DOS Batch 2 0 0 4
CSS 1 0 0 1

SUM: 76532 1680566 1991214 7587239

LU HTTUVE 11 TIUTALT UL

Defined in header <utility>

template< class T >
typename std::conditional<
Istd::1s nothrow move constructible<T>::value && std::is copy constructible<T>::value, C++
const T§&, (unti!
T&& C++
>::type move if noexcept(T& x) noexcept;

template< class T >
constexpr typename std::conditional<

(sinc

Istd::is_nothrow move constructible<T>::value && std::is copy constructible<T>::value, (sinc
const T&, C++
T&&

>::type move if noexcept(T& x) noexcept;

ove if noexcept obtains an rvalue reference to its argument if its move constructor does not throw exceptions or if
here is no copy constructor (move-only type), otherwise obtains an Ivalue reference to its argument. It is typically
sed to combine move semantics with strong exception guarantee.

Parameters

- the object to be moved or copied

Return value

std: :move(x) or x, depending on exception guarantees.

Notes

his is used, for example, by std::vector::resize, which may have to allocate new storage and then move or copy
lements from old storage to new storage. If an exception occurs during this operation, std: :vector: :resize undoes
verything it did to this point, which is only possible if std: :move if noexcept was used to decide whether to use
nove construction or copy construction. (unless copy constructor is not available, in which case move constructor is
sed either way and the strong exception guarantee may be waived)

Exambple

inalllilly alild Viidillyg

os refer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program text refers to the binding of that name established ir
containing the use.

ck is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function body, and a class definition. Each command typed interact
 file given as standard input to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a command spe
nand line with the ‘-¢’ option) is a code block. The file read by the built-in function exectile() is a code block. The string argument passed to the built-in function evai() ar
ode block. The expression read and evaluated by the built-in function input () is a code block.

le block is executed in an execution frame. A frame contains some administrative information (used for debugging) and determines where and how execution continue
ition has completed.

pe defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that block. If the definition occurs in a function block, the scop
ined within the defining one, unless a contained block introduces a different binding for the name. The scope of names defined in a class block is limited to the class bloc
bde blocks of methods — this includes generator expressions since they are implemented using a function scope. This means that the following will fail:

42
list(a + 1 for i in range(10))

/2]
nn p

o

1 a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible to a code block is called the block’s environment.

ame is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global variable. (The variables of the module code block are local
d in a code block but not defined there, it is a free variable.

1 a name is not found at all, a nameError exception is raised. If the name refers to a local variable that has not been bound, a unboundrocalerror e€xception is raised.
ass of nameError.

ollowing constructs bind names: formal parameters to functions, import statements, class and function definitions (these bind the class or function name in the defining blo
fiers if occurring in an assignment, for loop header, in the second position of an except clause header or after as in a with statement. The import statement of the form 1
mes defined in the imported module, except those beginning with an underscore. This form may only be used at the module level.

jet occurring in a de1 statement is also considered bound for this purpose (though the actual semantics are to unbind the name). It is illegal to unbind a name that is refe
2; the compiler will report a syntaxerror.

assignment or import statement occurs within a block defined by a class or function definition or at the module level (the top-level code block).

ame binding operation occurs anywhere within a code block, all uses of the name within the block are treated as references to the current block. This can lead to error
1 a block before it is bound. This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local variables
mined by scanning the entire text of the block for name binding operations.

global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that name in the top-level namespace. Names are r
space by searching the global namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
space is searched first. If the name is not found there, the builtins namespace is searched. The global statement must precede all uses of the name.

uiltins namespace associated with the execution of a code block is actually found by looking up the name _ builtins__ in its global namespace; this should be a dictior

raco the modiila’e Aictinnarygy ie 1icadl By Aafanilt whaean in the s mndiila T T e iec the hiiitlicin mnadnlla e T A2 Innte: NnA ‘e’ N\ whan in anvy nthar mnodnila

Problem #3:
How do we reason about
programming languages?

Annual cost of software bugs

lel?2

1.75 1 -
$1.1 trillion
1.50 A

1.25 A

1.00 -

Dollars

0.75 A

0.50 A

0.25 -

$59 billion

2002 2004 2006 2008 2010 2012 2014 2016
Year

0.00 -

Sources: NIST 2002, Tricentis 2017

Annual cost of software bugs (extrapolated)

lel3 $48 trillion
> P
..
"2 USGDP($18trillion)
1 /
N 3559 billion o $1.1 trillion
20'05 20'10 20'15 20l20 20'25 20'30

Year

Sources: NIST 2002, Tricentis 2017

Type safety matters more than ever
jve = — BScala + [

< —> £ Swift

i1d
f" —VP (with types)

Dennard scaling is dead

10,000,000
Dual-Core Itanium 2 o
1,000,000
Intel CPU Trends J
(sources: Intel, Wikipedia, K. Olukotun) -
100,000
10,000
Processor clock rate stops
increasing
1,000
100
- No further benefit from ILP
1 B =Transistor density
e o ® ® = Clock frequency
e A =Power
8 ® =Instruction-level parallelism (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 (MU 15-418/618, Spring 2017

High-performance DSLs reign

tf.placeholder(tf.int16)
tf.placeholder(tf.int16)

T
I

Define some operations

 srioe e o TensorFlow

mul = tf.multiply(a, b)

Launch the default graph.

with tf.Session() as sess:
Run every operation with variable input
print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}))
print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3}))

Func blur_3x3(Func input) {
Func blur_x, blur_y;
Var x, y, xi, yi;

// The algorithm - no storage or order
blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;

H I. I blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;
a I e // The schedule - defines order, locality; implies storage

blur_y.tile(x, y, xi, vyi, ; 32)
.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);

return blur_y;

Course theme:
Bridging the gap between
systems and theory

Course overview

 Theory
- Formal systems for describing and reasoning about PLs
- Core vocabulary for describing programming constructs
- Essentials of the functional programming paradigm

 Systems
- Apply formal methods to real world languages and systems
- Reason about memory safety, state machines, assembly, ...
- Compare value of dynamic vs. static typing

Syllabus

* Weeks 1-3: Theory

- Lambda calculus and OCam|
- The language of programming languages
- Functional programming basics

* Weeks 4-5: WebAssembly

- Case study on applying formal semantics to low level languages

 Weeks 5-7: Rust

- Memory safety, traits, concurrency, state machines, and communication
- (Plus a WebAssembly interpreter!)

e Weeks 8-9: Lua

- Dynamic vs. static typing, object systems

Course structure

* Weekly assignments
- Submit up to 3 days late per assignment, 5 late days total over semester
- Mixed programming/written

e No midterm
- ... Butthereisa final

 No required readings
- Supplementary material in the syllabus
- All lecture notes/code will be posted online
- Lecture videos available through SCPD

Prerequisites

 CS103: induction, first order logic, basic proofs

* CS110: assembly (ARM or x86), C, concurrency (threads,
synchronization primitives)

Intro to syntax and semantics

