
Metaprogramming CS 242

November 29, 2017

• Seeing the diversity of tools for generating code

• Understanding the use cases for metaprogramming

• Formalizing a structured taxonomy of metaprogramming

Today’s goals

CODE

 

DATA
is

“One man’s program is another
program’s data.” 

Olivier Danvy

• Programmatic, iterative find + replace

- Composable! Macros within macros

• Expressiveness: add constructs to the language

- “Polymorphic” functions without void*

- Foreach loops

• Performance: inline everything

- Don’t leave it up to the compiler

• Correctness: easy to break (not hygienic)

- Variable names clash

- Incorrect precedence

C preprocessor: programs as strings

• Templates provide illusion of polymorphism

- Thinly veiled mechanism for static dispatch

- Not type safe

- Sugar is more convenient than C

• Waaaay more to templates than meets the eye

- Who put a Turing-complete language runtime in my compiler?

C++ templates: sugaring “polymorphism”

• Macros: find+replace with hygiene

- Principled pattern matching: expressions vs. statements

- No accidental variable use (partially thanks to lexical scoping)

• Custom derive: Rust code introspecting struct fields

- Function : struct —> trait impl

- First example of staging: running Rust code at compile time

- Specifically generates trait implementation of a struct

• Procedural macros: Rust code doing anything

- Function : tokens —> Rust code

- Highly expressive

- Not composable

Rust: many kinds of metaprogramming

Staging  

Finite levels of evaluation

• Fused compiler/interpreter = runtime metaprogramming

- eval/dostring/loadfile/etc.

- Varying support for quotations

• “Infinitely” staged (no limit on theoretical recursion)

• Reflection is commonplace, but still meta programming

- Getting the type of a variable

- Inspecting the fields of a class

- Generating new classes at runtime

Scripting languages close the loop

Higher order functions = macros?

let add_one = List.map ~f:(fun x -> x + 1)

OCaml

Functions = macros?

def map(f):
 return lambda l: [f(x) for x in l]

@map
def add_one(n):
 return n + 1

print(add_one([1, 2, 3])) # [2, 3, 4]

Python

Homogenous
metaprogramming

 
Language generates code in  

the same language

• Research project out of Pat Hanrahan’s group at Stanford

• Code generation important for perf in scripting

- Generating the host language isn’t sufficient

- Lower level targets are hard to generate/interoperate

• Terra makes it easy to:

- Generate C-ish code without using strings

- Mix Lua values into C-ish

- Compile and run generated C-ish code

Terra: metaprogrammable C in Lua

• Goal: generation vs. analysis

• Representation: strings vs. syntax trees vs. quotes

• Execution mode: staged vs. interpreted

• Output: homogeneous vs. heterogeneous

Taxonomy of metaprogramming

• Lisps: Common Lisp, Emacs Lisp, Racket, Clojure, Scheme

- Originator of macros… in the 1960s!

- Homoiconicity: the concrete syntax = the abstract syntax

• Typed metaprogramming

- Rust’s types are just syntactic (“this the syntax for a function”)

- What about “this is function syntax that returns type int”?

- Originated with MetaML, still active area of research

- Lightweight Modular Staging (LMS) in Scala

Additional topics

• Metaprogramming used for performance or expressiveness

- “Abstraction without regret” — compile away general APIs for perf

- Paper over missing features like closures or polymorphism

- Drawback is often usability (debugging, error messages, no formalisms),

hard to ensure correctness in macro definition

• Macro systems generate code in a multitude of ways

- C preprocessor/C++ templates/Rust macros: find+replace in templates

- Rust custom derive/procedural macros: staged Rust code

• Scripting languages get most metaprogramming for free

- Main problem is generating/interoperating with efficient code

Summary

