. CS 242
Meta pr()g rammi ng November 29, 2017

Today's goals

* Seeing the diversity of tools for generating code
* Understanding the use cases for metaprogramming

* Formalizing a structured taxonomy of metaprogramming

“One man'’s program is another
program’s data.”

Olivier Danvy

Cutting corners to meet arbitrary mandgement deadlines

FEssential

ol A

Copying and Pasting

from Stack Overtlow

1he Practical Developer
@ 1hePracticalDev

O’REILLY"

C preprocessor: programs as strings

* Programmatic, iterative find + replace
- Composable! Macros within macros

 Expressiveness: add constructs to the language
- "Polymorphic” functions without void*
- Foreach loops

* Performance: inline everything
- Don't leave it up to the compiler

* Correctness: easy to break (not hygienic)
- Variable names clash
- Incorrect precedence

C++ templates: sugaring “polymorphism”

o Templates provide illusion of polymorphism
- Thinly veiled mechanism for static dispatch
- Not type safe
- Sugar is more convenient than C

» Waaaay more to templates than meets the eye
- Who put a Turing-complete language runtime in my compiler?

Rust: many kinds of metaprogramming

* Macros: find+replace with hygiene
- Principled pattern matching: expressions vs. statements
- No accidental variable use (partially thanks to lexical scoping)

e Custom derive: Rust code introspecting struct fields
- Function : struct —> trait impl
- First example of staging: running Rust code at compile time
- Specifically generates trait implementation of a struct

* Procedural macros: Rust code doing anything
- Function : tokens —> Rust code
- Highly expressive
- Not composable

Staging

Finite levels of evaluation

Scripting languages close the loop

* Fused compiler/interpreter = runtime metaprogramming
- eval/dostring/loadfile/etc.
- Varying support for quotations

* “Infinitely” staged (no limit on theoretical recursion)

* Reflection is commonplace, but still meta programming
- Getting the type of a variable
- Inspecting the fields of a class
- Generating new classes at runtime

Higher order functions = macros?

let add one = List.map ~f:(fun x —> x + 1)

OCaml

Functions = macros?

def map(f):
return lambda 1: [f(x) for x in 1]

@map
def add one(n):
return n +

print(add_one([1, 2, 3]))

Python

Chapter 9. Metaprogramming

Onc of the oot impostart mantras of sofowere devzlopment is "doa't ropeat rouracif.” That i, any $me you arc fnced witha
preblem of arcating highly repofitive cede (or cultirg or pasting sourcecodc), it often payato ook for o mere degant sokatin. In
Py-hoa, much problame am ofter solved usder the category of "metsprogramming.” [n 3 mtenll, metagrogramming ic sboat
creatiag functione and clacces whose maia geal & to manipulste soce (o.g. medifyirg, genmarating, or waapping eicting soce). The
muin ‘eatares for thie inchids decomtars, clasx deccratore, ard metaclaceoe. However, = varioty of other uesful topice—icludisg
signatare object, exeastiyn of code with exec (), aad incpocting the intoraals of functione and clucac—ontor the piciure. The man
porpores af thic rhapte- icta svplare varione mehpangramming ek niques and ta gvoe svamplec of bow they ean e ueed te

enctnmyize the hehovine of Pythen ta yenr mwn whine

Putling a VWWrapper Around a Function

Problem

Yoa want to puta vrapper laver arsund a tanction that adds 2xtra processing (e.8., ogging, timirg, etc.),

Sclution

It you ever need to wrip 2 tusction with extra cade, dehne a decoralor tunstym. Forexzmple:

eIt wWhops

(func):

[func)

(*arg:, **kmorgs):
start = tise.tise()
result = funcC*args, **bworgs)
ond = Limo,. btmel)
nt{fene __neme__ snd-ctart)
resslt

wrapper

Decorators vs. the Decorator Pattern =

First, you need to understand that e word “decerator” was used with scme trepication in Python,
because thers was concern that it wou'd be compl etely confused with the Decovarforpattern from
the Despn Patterns hook. At ane point other terms were ransicdered for the feature. but
*cecoralor”® seems (o be the one thal sticks,

Indeed, you can use Pythan decorators Lo implement the Decoralor patlerm, bul that's an exlremely

linited use of il Python decorators, | think, are best equated Lo macros,

History of Macros

The macro has a long history, bul mast peaple will probably have had experence with C
preprocessor macros. The problems vith C macros were (1) they were in a different language (not
C) and (2) the behavior was sometimes bizarre, and coften inconsistent with the behavior of the rest
of C

Bocth Java and C# have acded annofadions, which allow you to do some things to elements of the
language. Both of these have the problems that (1) to do what you want, you somelimes have Lo
jump tarough some enormous and untenable Roops, which follows from (2] these annatation
features have their hands tied by the bondage-and-discipline jor as Martin Fowler gently puts it:
*Directing") nature of those languages.

In a slightly different vein, many C++ programmers [myself included) have noted the generstive
abifbes of C++ templates and have used that feature in a macre- ke fashion.

Mary other languages have incorporated macros, but without Xnowing much about it I will go out
on a limb and say that Python decorators are similar to Lisp macras in power and possibilicy.

Python decorators: metaprogramming with

style

» Publishec on 25/04/2015

Homogenous
metaprogramming

Language generates code in
the same language

Terra: metaprogrammable Cin Lua

* Research project out of Pat Hanrahan's group at Stanford

* Code generation important for perf in scripting
- Generating the host language isn't sufficient
- Lower level targets are hard to generate/interoperate

* Terra makes it easy to:
- Generate C-ish code without using strings
- Mix Lua values into C-ish
- Compile and run generated C-ish code

Taxonomy of metaprogramming

* Goal: generation vs. analysis
* Representation: strings vs. syntax trees vs. quotes
* Execution mode: staged vs. interpreted

* Output: homogeneous vs. heterogeneous

Additional topics

* Lisps: Common Lisp, Emacs Lisp, Racket, Clojure, Scheme
- Originator of macros... in the 1960s!
- Homoiconicity: the concrete syntax = the abstract syntax

 Typed metaprogramming
- Rust's types are just syntactic (“this the syntax for a function”)
- What about “this is function syntax that returns type int"?
- Originated with MetaML, still active area of research
- Lightweight Modular Staging (LMS) in Scala

Summary

* Metaprogramming used for performance or expressiveness
- "Abstraction without regret” - compile away general APIs for perf
- Paper over missing features like closures or polymorphism

- Drawback is often usability (debugging, error messages, no formalisms),
hard to ensure correctness in macro definition

 Macro systems generate code in a multitude of ways
- C preprocessor/C++ templates/Rust macros: find+replace in templates
- Rust custom derive/procedural macros: staged Rust code

* Scripting languages get most metaprogramming for free
- Main problem is generating/interoperating with efficient code

