
Behind the scenes of Rust
Alex Crichton















Tooling

Infrastructure

Community



We’re not in 1970

• Developers have high expectations for tooling support


• Developers also expect a lot of tools


• Tools alone can often spawn entire ecosystems



Tools in Rust

• cargo


• rustdoc


• rustup


• rustc

• gdb


• RLS


• rustfmt



Why Cargo?

Time

C
rates



Why Cargo?

• Sharing code is critical for a young language


• A package manager from day one is hugely beneficial


• Despite blocking 1.0 on Cargo, Cargo accelerated 
stabilization of libstd through aggressive pruning



How has Cargo helped?

• Small standard library far easier to port and maintain


• “Dependency hell” is almost a thing of the past


• Language features like custom derive far easier with 
Cargo



What else was missing?



Enter the LSP



Enter the RLS



RLS requirements
• Needs to support common IDE queries like


• go to definition


• find all uses


• renaming variables


• Can’t reimplement all of rustc


• Responses must be fast

“You must use rustc”

“You must not use rustc”



Getting rustc fast



Getting rustc fast
Where’s the definition of this type?



Polishing the RLS

rustup component add rls-preview



Tools in Rust

• cargo


• rustdoc


• rustup


• rustc

• gdb


• RLS


• rustfmt




Tooling

Infrastructure

Community



We’re still not in 1970

• Developers expect their tools to not break


• Developers expect low friction when managing tools


• Vast majority of users will always be new ones



Infrastructure of Rust
• Continuous Integration


• {www,doc,play}.rust-lang.org


• crates.io


• Rapid release cycle


• “Dealing with GitHub”


• AWS services, CDNs, storage, etc



• Managed via PRs on GitHub


• Continuously deployed


• Delivered via CloudFront CDN


• Fun with DNS/SSL/…







rustup update

• Also delivered via CDN


• Delivers over 50 targets to compile to


• Crazy platform-specific logic in rustup itself 



cargo build

• crates.io crates delivered via CDN


• crates.io itself written in Rust


• Deployed via Heroku



You’ve found a bug!

• All rustc/Rust language development happens on GitHub


• GitHub is what most know and love, makes it easiest for 
new contributors


• Let’s send a PR…







bors: Mandatory homage



The Last of the Masters

The title character, Bors, a 200-year-old "government 
integration robot"—and the last in existence—awakens 
after a routine maintenance check to learn that his motor 
system is in a state of decline. An artificially intelligent 
machine who displays a degree of emotion and even 
psychological complexity, he is informed by Fowler, a 
personal mechanic, that his body has begun to break 
down due to age.



bors never sleeps



bors in action



bors in action



bors in action



bors in action







Release trains

• Nightly, beta, stable channels


• Automatic nightlies each night


• Stable/beta updated once every 6 weeks


• Stable/beta receive bug fixes with “backports”



Infrastructure of Rust
• Continuous Integration


• {www,doc,play}.rust-lang.org


• crates.io


• Rapid release cycle


• “Dealing with GitHub”


• AWS services, CDNs, storage, etc



Tooling

Infrastructure

Community



We get it, it’s not 1970

• Development does not happen in isolation any more


• Everyone’s got thoughts (often great ones!)


• Early stage projects live and die by their communities



Rust’s Community

• Governance of Rust itself


• RFC process


• Internals/users forum, IRC


• Community team


• Conferences





To int or not to int?



Reducing entropy








