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Introduction



A (Very) Brief History of Automated Reasoning

Philosophers have long dreamed of machines that can reason.
The pursuit of this dream has occupied some of the best minds
and led both to great acheivements and great disappointments.
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Automated Reasoning

Automated Reasoning: A Failure?

• At the turn of the century, automated reasoning was still
considered by many to be impractical for most real-world
applications

• Interesting problems appeared to be beyond the reach of
automated methods because of decidability and complexity
barriers

• The dream of Hilbert’s mechanized mathematics or Leibniz’s
calculating machine was believed by many to be simply
unattainable
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The Satisfiability Revolution

Princeton, c. 2000

• Chaff SAT solver: orders of magnitude faster than previous SAT
solvers

• Important observation: many real-world problems do not exhibit
worst-case theoretical performance

Palo Alto, c. 2001

• Idea: combine fast new SAT solvers with decision procedures for
decidable first-order theories

• SVC, CVC solvers (Stanford); ICS, Yices solvers (SRI)

• Satisfiability Modulo Theories (SMT) was born
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SMT solvers

SMT solvers: general-purpose logic engines

• Given condition X , is it possible for Y to happen

• X and Y are expressed in a rich logical language
• First-order logic
• Domain-specific reasoning

• arithmetic, arrays, bit-vectors, data types, etc.

SMT solvers are changing the way people solve problems

• Instead of building a special-purpose solver

• Translate into a logical formula and use an SMT solver

• Not only easier, often better
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A Security Example

Django

• Widely used open-source web development platform

• A security vulnerability in Django (CVE-2013-6044) was
blamed on the following function1

def is_safe_url(url, host=None):
" " "
R e t u r n ‘ ‘ T r u e ‘ ‘ i f t h e u r l i s a s a f e r e d i r e c t i o n ( i . e . i t d o e s n ’ t
p o i n t t o a d i f f e r e n t h o s t ) .

A l w a y s r e t u r n s ‘ ‘ F a l s e ‘ ‘ o n a n e m p t y u r l .
" " "
if not url:

return False
netloc = urllib_parse.urlparse(url)[1]
return not netloc or netloc == host

1
https://github.com/django/django/blob/09a5f5aabe27f63ec8d8982efa6cef9bf7b86022/django/utils/http.py#L252
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Using SMT To Find the Vulnerability

An approach for finding security vulnerabilities

• Symbolic execution: generates a logical formula satisfiable iff
code can violate security policy

• SMT solver: returns a solution or proves that none exists
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Using SMT To Find the Vulnerability

Demo: Django XSS attack
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SMT Solvers
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SMT Solvers

12

SAT Solver

• Only sees Boolean skeleton
of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions



SMT Solvers
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Core

• Sends each assertion to the
appropriate theory

• Sends deduced literals to
other theories/SAT solver

• Handles theory combination



SMT Solvers
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Theory Solvers

• Decide T -satisfiability of a
conjunction of theory literals

• Incremental

• Backtrackable

• Conflict Generation

• Theory Propagation



Theory Solvers



Theory Solvers

Given a theory T , a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T -satisfiable.

Φ is T -satisfiable iff there is some model M of T such that each
formula in Φ holds in M .
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Theories of Interest: UF

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07]

Typically used to abstract unsupported constructs, e.g.:

• non-linear multiplication in arithmetic
• ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) 6= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

if we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) 6= d ∧ a = b

it is still unsatisfiable
15



Theories of Interest: Arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support more
efficient methods:

• Bounds: x ./ k with ./ ∈ {<, >, ≤, ≥, =} [BBC+05a]

• Difference logic: x− y ./ k, with
./ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

• UTVPI: ±x± y ./ k, with ./ ∈ {<, >, ≤, ≥, =} [LM05]

• Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 [DdM06]

• Non-linear arithmetic, e.g:
2xy + 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]

16



Theories of Interest: Arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO+08a, dMB09]

Two interpreted function symbols read and write

Axiomatized by:

• ∀a ∀i ∀v read(write(a, i, v), i) = v

• ∀a ∀i ∀j ∀v i 6= j → read(write(a, i, v), j) = read(a, j)

Sometimes also with extensionality :

• ∀a ∀b (∀i read(a, i) = read(b, i) → a = b)

Is the following set of literals satisfiable in this theory?

write(a, i, x) 6= b, read(b, i) = y, read(write(b, i, x), j) = y, a = b, i = j
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Theories of Interest: Bitvectors

Useful both in hardware and software verification [BCF+07, BB09, HBJ+14]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

• String-like: concat, extract, . . .
• Logical: bit-wise not, or, and, . . .
• Arithmetic: add, subtract, multiply, . . .
• Comparison: <,>, . . .

Is this formula satisfiable over bitvectors of size 3?

a[1 : 0] 6= b[1 : 0] ∧ (a | b) = c ∧ c[0] = 0 ∧ a[1] + b[1] = 0

18



Implementing a Theory Solver: Difference Logic

We consider a simple example: difference logic.

In difference logic, we are interested in the satisfiability of a
conjunction of arithmetic atoms.

Each atom is of the form x− y ./ c, where x and y are variables, c is
a numeric constant, and ./ ∈ {=, <,≤, >,≥}.

The variables can range over either the integers (QF_IDL) or the reals
(QF_RDL).
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Difference Logic

The first step is to rewrite everything in terms of ≤:
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Difference Logic

Now we have a conjunction of literals, all of the form x− y ≤ c.

From these literals, we form a weighted directed graph with a vertex
for each variable.

For each literal x− y ≤ c, there is an edge x c−→ y.

The set of literals is satisfiable iff there is no cycle for which the sum
of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative
cycles in graphs.
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2

⇒

w − x = 2

w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5 x− y ≤ 5 ∧ y − x ≤ −5

z − y ≥ 2 y − z ≤ −2

z − x > 2 ⇒ x− z ≤ −3

w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0 z − w ≤ −1
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Difference Logic Example

−3

−2

−12

−2

5

−5
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DPLL(T ): Combining T -Solvers with SAT



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
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Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices, Z3

This talk will focus on the lazy approach 28
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(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory T : Equality with Uninterpreted Functions

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and

disequalities
• Theory atoms (e.g., g(a) = c) abstracted to propositional atoms

(e.g., 1)
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(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.
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Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

•
• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of
M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable
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M and add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

• If M is T -unsatisfiable, backtrack to some point where the
assignment was still T -satisfiable
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Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

32



Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

32



Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

32



An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by a set of
conditional transition rules

The framework can be first developed for SAT and then extended to
lazy SMT [NOT06, KG07]

33



Advantages of Abstract Framework

An abstract framework helps one:

• skip over implementation details and unimportant control aspects

• reason formally about solvers for SAT and SMT

• model advanced features such as non-chronological bactracking,
lemma learning, theory propagation, . . .

• describe different strategies and prove their correctness

• compare different systems at a higher level

• get new insights for further enhancements

The one described next is a re-elaboration of those in
[KBT+16, NOT06, KG07]
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The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

• DPLL tries to build incrementally a satisfying truth assignment
M for a CNF formula F

• M is grown by
• deducing the truth value of a literal from M and F , or
• guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value
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An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

where

• M is a sequence of literals and decision points •
denoting a partial truth assignment

• F is a set of clauses denoting a CNF formula

Def. If M = M0 •M1 • · · · •Mn where each Mi contains no decision points

• Mi is decision level i of M

• M [i] def
= M0 • · · · •Mi
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An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

Initial state:

• 〈(), F0〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable

• 〈M,G〉 otherwise, where
• G is equivalent to F0 and
• M satisfies G
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Transition Rules: Notation

States treated like records:

• M denotes the truth assignment component of current state

• F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 · · · pn

[M := e1] [F := e2]

updating M, F or both when premises p1, . . . , pn all hold
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Transition Rules for the Original DPLL

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Note: Clauses are treated modulo ACI of ∨

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F )
def
= {l | l literal of F} ∪ {l | l literal of F}
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Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N

M := M l

Note: Last premise of Backtrack enforces chronological backtracking

39



Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N

M := M l

Note: Last premise of Backtrack enforces chronological backtracking

39



From DPLL to CDCL Solvers (1)

To model conflict-driven backjumping and learning, add to states a
third component C whose value is either no or a conflict clause

States: fail or 〈M,F,C〉

Initial state:

• 〈(), F0, no〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable
• 〈M,G, no〉 otherwise, where

• G is equivalent to F0 and
• M satisfies G
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From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment
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lev l = i iff l occurs in decision level i of M
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From DPLL to CDCL Solvers (3)

Modify Fail to

Fail
C 6= no • /∈ M

fail
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Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·
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From DPLL to CDCL Solvers (4)

Also add

Learn
F |=p C C /∈ F

F := F ∪ {C}

Forget
C = no F = G ∪ {C} G |=p C

F := G

Restart
M := M[0] C := no

Note: Learn can be applied to any clause stored in C when C 6= no
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Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the
transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }
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The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.
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Note: This is not so immediate, because of Backjump.
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The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide
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priorities:
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From SAT to SMT

Same states and transitions but

• F contains quantifier-free clauses in some theory T

• M is a sequence of theory literals and decision points

• the DPLL system is augmented with rules

T -Conflict, T -Propagate, T -Explain

• maintains invariant: F |=T C and M |=p ¬C when C 6= no

Def. F |=T G iff every model of T that satisfies F satisfies G as well
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SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

49



SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

49



SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

49



Modeling the Very Lazy Theory Approach

T -Conflict is enough to model the naive integration of SAT solvers
and theory solvers seen in the earlier UF example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail
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A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes
T -unsatisfiable
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1 4 2 1, 2 ∨ 3, 4 no by Backjump
1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail
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Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the
rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the
engine’s search [Tin02]

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D
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Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed
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Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)
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Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, F0 is T -satisfiable; specifically,
M is T -satisfiable and M |=p F0.
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Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.
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DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver
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DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

DPLL(X):

• Very similar to a SAT solver, enumerates Boolean models

• Not allowed: pure literal, blocked literal detection, ...

• Required: incremental addition of clauses

• Desirable: partial model detection
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DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals

• Computes theory propagations

• Produces explanations of T -unsatisfiability/propagation

• Must be incremental and backtrackable
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Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable
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Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

60



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

60



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

60



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

60



Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”
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Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F

F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly
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Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

• determine whether M |=T ⊥ or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |=T ⊥ only if all
literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T -solver only needs
a small subset of LS to be defined in M
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Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z
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Correctness Results

Correctness results can be extended to the new rule.

Soundness: The new T -Learn rule maintains satisfiability of the
clause set.

Completeness: As long as the theory solver can decide M |=T ⊥
when all literals in LS are determined, the system is still complete.

Termination: The system terminates under the same conditions as
before. Roughly:

• Any lemma is (re)learned only finitely many times

• Restart is applied with increased periodicity
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Combining Theories



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

67



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

67



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

67



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

67



Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory
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Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a

e1 = f(x)− f(y) e1 = e2 − e3
e2 = f(x)

e3 = f(y)
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Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(0) > a + 2 =⇒ f(e4) > a + 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a + 2
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Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(1) = a =⇒ f(e1) = a

e1 = 1
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(2) = f(1) + 3 =⇒ e2 = 2

f(e2) = e3

f(e1) = e4

e3 = e4 + 3

70



Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Consider each case of x = e1 ∨ x = e2 separately
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Case 1) x = e1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1
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Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4
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1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

Case 2) x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1
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The Nelson-Oppen Method

• For i = 1, 2, let Ti be a first-order theory of signature Σi (set of

function and predicate symbols in Ti other than =)

• Let T = T1 ∪ T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals
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The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat
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Correctness of the NO Method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are stably
infinite, when the method returns sat for some arrangement, the input
is (T1 ∪ T2)-is satisfiable.
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Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear

orders, theory of lists)

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagation
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Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size,

arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of

bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of
non-stably infinite theories [TZ05, RRZ05, JB10]
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a theory solver for
T

2. Build a DPLL(T ) solver as usual

78



SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Better Solution [Bar02, BBC+05b, BNOT06]:

1. Extend DPLL(T ) to DPLL(T1, . . . , Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . , Xn) level

3. Build a DPLL(T1, . . . , Tn) solver

78



Modeling DPLL(T1, . . . , Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

• Let C be a set of free constants

• Assume wlog that each input literal has signature (Σ1 ∪ C) or
(Σ2 ∪ C) (no mixed literals)

• Let M|i
def
= {(Σi ∪ C)-literals of M and their complement}

• Let I(M)
def
= {c = d | c, d occur in C, M|1 and M|2} ∪
{c 6= d | c, d occur in C, M|1 and M|2}

(interface literals)
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Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally
in each Ti
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Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T -Explain

C = l ∨D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
81
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Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail
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Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail
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Applications



Some Applications of SMT

Program Analysis and Verification

• Software Model Checking2 (e.g. BLAST, SLAM)

• K-Induction-Based Model Checking3 (e.g. Kind)

• Concolic or Directed Automated Random Testing4 (e.g. CUTE,
KLEE, PEX)

• Program Verifiers (e.g. VCC,5 Why36)

• Translation Validation for Compilers (e.g. TVOC7 )

2
Jhala and Majumdar, Software Model Checking, ACM Computing Surveys 2009.

3
Hagen and Tinelli, Scaling Up the Formal Verification of Lustre Programs with SMT-Based Techniques, FMCAD’08.

4
Godefroid, Klarlund, and Sen, DART: Directed Automated Random Testing, PLDI ’05

5
Dahlweid, Moskal, Santen et al. VCC: Contract-based modular verification of concurrent C, ICSE ’09.

6
Bobot, Filliâtre, Marché, and Paskevich, Why3: Shepherd Your Herd of Provers, Boogie ’11.

7
Zuck, Pnueli, Goldberg, Barrett et al., Translation and Run-Time Validation of Loop Transformations, FMSD ’05.
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Some Applications of SMT

Non-verification Applications

• AI (e.g. Robot Task Planning8)
• Biology (e.g. Analysis of Synthetic Biology Models9)
• Databases (e.g. Checking Preservation of Database Integrity10)
• Network Analysis (e.g. Checking Security of OpenFlow Rules11)
• Scheduling (e.g. Rotating Workforce Scheduling12)
• Security (e.g. Automatic Exploit Generation13)
• Synthesis (e.g. Symbolic Term Exploration14)

8
Witsch, Skubch, et al., Using Incomplete Satisfiability Modulo Theories to Determine Robotic Tasks, IROS ’13.

9
Yordanov and Wintersteiger, SMT-based analysis of Biological Computation, NFM ’13.

10
Baltopoulos, Borgström, and Gordon, Maintaining Database Integrity with Refinement Types, ECOOP ’11.

11
Son, Shin, Yegneswaran et al., Model Checking Invariant Security Properties in OpenFlow, ICC ’13.

12
Erkinger, Rotating Workforce Scheduling as Satisfiability Modulo Theories, Master’s Thesis, TU Wien, 2013.

13
Avgerinos, Cha, Rebert et al. Automatic Exploit Generation, CACM ’14.

14
Kneuss, Kuraj, Kuncak, and Suter, Synthesis Modulo Recursive Functions, OOPSLA ’13.
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New Theories

SMT users are clamouring for more capabilities

New theories in the pipeline

• Theory of sets with cardinality

• Theory of floating-point numbers

• Theory of separation logic

Going forward

• There is a huge opportunity to design and implement decision
procedures for new domain-specific theories
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Scalability

Plenty of room for performance improvements

• SMT innovations continue at both the system and algorithm level

• Example: With recent breakthroughs in arithmetic and bit-vector
algorithms, CVC4 can solve many problems that were previously
too hard (for any solver)

• Parallel computing still largely untapped

Google

• Ongoing collaboration with Google with ambitious goals for
using symbolic execution on Google code

• Lots of interesting research questions about how to make use of
Google’s massive resources to apply symbolic execution and
SMT solving on a massive scale 88



Tool integration using proofs

Skeptical proof assistants

• Tools like Coq and Isabelle/HOL are used extensively to verify
systems and algorithms, despite their lack of automation

• SMT solvers cannot currently help because these tools do not
trust external results

Idea: Produce independently checkable proofs

• We are instrumenting CVC4 to produce proof certificates in a
formal proof framework called LFSC

• One goal: replay proofs in tools like Coq and Isabelle/HOL

• Collaboration with Andrew Appel at Princeton to support his
verified software toolchain
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Verifying Neural Networks

Deep Learning can do Amazing Things

• Identify images

• Recognize speech

• Drive cars and airplanes

Safety-Critical applications: Need ways to analyze safety of neu-
ral network

• Problem: case anlaysis explosion (SMT and LP solvers blow up)

• Culprit: activation functions, e.g. Rectified Linear Unit (ReLU)

• Solution: Develop a custom theory solver for neural networks
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Verifying Neural Networks

Reluplex

• Simple SMT solver for neural networks 15

• Extends simplex algorithm to reason about ReLU functions

• Result: Can prove properties of networks an order of magnitude
larger than any previous method

• Dramatic reduction in case analysis required (from 2300 to 230)

Case study: ACAS Xu

• Traffic collision avoidance algorithm for unmanned aircraft

• Neural network controller being considered by FAA

• Reluplex successfully used to prove safety properties for these
networks

15
Katz, Barrett, Dill, et al., Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, CAV ’17. 91
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Agile Hardware Project

http://aha.stanford.edu

Collaboration with Prof. Hanrahan and Horowitz

• Build an open-source hardware flow

• Make it possible to do quick and incremental iterations of
hardware designs

SMT solvers being used to

• automatically verify circuit transformations

• provide automatic and incremental place-and-route
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Agile Hardware Project

Next steps

• Bulid open-source SMT-based model-checking tools

• Develop or extend SMT theories for hardware verification

• Verify interoperation of hardware module interfaces
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Summary

SMT solvers

• Provide general-purpose logical reasoning

• Can be customized for domain-specific reasoning

• Enabler for formal methods: automatic, expressive, scalable

• No shortage of challenging research problems
• with immediate practical impact
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More information

SMT resources

• SMT Survey Article: available at
http://theory.stanford.edu/~barrett/pubs/BKM14.pdf

• SMT-LIB standards and library http://smtlib.org

• SMT Competition http://smtcomp.org

• SMT Workshop http://smt-workshop.org

CVC4

• Visit the CVC4 website: http://cvc4.cs.nyu.edu

• Contact a CVC4 team member

• We welcome questions, feedback, collaboration proposals
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1. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, 2006.

2. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation 3:141-224, 2007.

3. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems
(FroCoS’07). Volume 4720 of LNCS. Springer, 2007.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability. IOS Press, 2009.
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