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Deep learning framework is an indispensable assistant for
researchers doing deep learning projects and it has greatly
contributed to the rapid development of this �eld. Among
the great amount of the public frameworks, we focus on Ten-
sor�ow and Ca�e2 and implement a detailed comparison of
the two in the aspect of the expressiveness, modeling capabil-
ities, help&support, performance on GPU, and the scalability.
�ey both use static computational graph and is similar in
structure, but Ca�e2 is more speedy and takes less space.
According to our experiments’ results, the time of training
using Ca�e2 is about 2/3 of the time of training on Tensor-
�ow and Ca�e2 takes about 40% less memory space than
Tensor�ow. In terms of the performance on doing inference
tasks, Ca�e2’s superiority is more conspicuous. Ca�e2 takes
about 75% less time than Tensor�ow on the same inference
task. However, Tensor�ow has be�er help&support, provides
more services and functions, and is thus a be�er choice to
realize novel and complicated models.

1 INTRODUCTION
As deep learning is becoming a hot topic, more and
more researchers and engineers are using deep learning
techniques to help solve big data problems such as com-
puter vision, speech recognition, and natural language
processing. �ere are many bene�ts to use a deep learn-
ing frameworks. For example, we can easily build big
computational graphs, compute gradients in it and run
it all e�ciently on GPUs(wrap cuDNN, cuBLAS, etc)[7].
Researchers are free from the pain of starting every-
thing from scratch and rebuild things that may have
already been implemented by other people before with
just a slight di�erence. Also, it helps to form a commu-
nity where everyone shares the common grammars for
writing programs so that they can easily communicate
with each other and it enables more code reusability.
Since a good deep learning framework accelerates the
progress of the work and is essential for doing success-
ful deep learning projects, choosing the appropriate
framework suitable for the task is an important next

step. Our work intends to give people guidance in mak-
ing their choices from the various kinds of the existing
frameworks. We believe there is no machine learning
framework that can beat any other frameworks. �ere
are always some advantages and disadvantages to use
a particular deep learning frameworks. �erefore, we
compare the frameworks in as many aspects as we can
think of to give the reader a thorough understanding
of the frameworks so that they can choose which one
to use more reasonably according to their own project
needs. We focus on two widely-known deep learning
frameworks: Ca�e2 and Tensor�ow and make a detailed
comparison in �ve aspects: the expressiveness, the mod-
eling capability, the performance, help & support, and
the scalability. We choose Tensor�ow because it is cur-
rently the most widely-used deep learning framework.
Ca�e was an extremely popular framework before Ten-
sor�ow was introduced and we believe there is a large
potential that the new framework Ca�e2 will gain a lot
of user preference in the near future. We �nd Ca�e2
and Tensor�ow do not di�er so much in expressiveness,
the modeling capability, and the scalability, but Ca�e2
signi�cantly performs be�er than Tensor�ow in both
speed and space aspects. �erefore, Ca�e2 is a be�er
choice for people who pursue speed or are limited by
the device restrictions. On the other hand, Tensor�ow
provides more services and tools, such as Tensorboard,
Tensor�ow serving, Tensor�ow Lite, and has a strong
advantages in help&support, it is a be�er choice if peo-
ple want to implement new or complicated models and
do not know how to implement exactly yet.
We �rst brie�y introduce the background and the sim-
ilarities of the two in section 2 and then elaborate on
their di�erences in the following section 3 - section 7.
Finally, we conclude our comparison and illustrate the
possible future work in Section 8.
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2 SIMILARITIES
Ca�e2 and Tensor�ow are respectively developed by
Facebook and Google, which have di�erent strategies in
building their frameworks. Facebook describes Ca�e2
as ”a lightweight and modular deep learning framework
emphasizing portability while maintaining scalability
and performance.”, which in short sentence, emphasized
the advantage of Ca�e2 in production(Facebook uses
Pytorch as research purpose). In contrast, Google aims
to build Tensor�ow into a all-in-one solution for various
machine learning tasks and thus, Tensor�ow is more
complicated, comprehensive, and bulky. �ey share the
similarities in the following points:

• �ey supports auto gradient computation, both
use C++ for computing, and provide Python and
C++ interface,

• �ey allow users to deploy trained models on
a variety of servers or mobile devices without
having to implement a separate model decoder
or load a Python interpreter.

• Both support auto gradient computation, use
the static computation graph, and precompile
the network to obtain the optimal training per-
formance.

• �ey support multiple machine distributed com-
puting.

• �ey support deployment on CPU, NVIDIAGPU
hardware and the deployment on mobile sys-
tems.

• �ey are open sourced.

3 EXPRESSIVENESS
We compared the expressiveness of Ca�e2 and Tensor-
�ow by twometrics: easiness to write, easiness to debug.
Finally, we also implemented a simple user study to in-
vestigate the true using experience of these two deep
learning frameworks.

3.1 Easiness to write
3.1.1 code style. Tensor�ow andCa�e2 both use static

computational graphs to achieve be�er performance
and thus are very similar in their code style. Tensor�ow
uses Tensor as their data units. Every node including
operators in the computation graph is a basic Tensor.
In contrast, Ca�e2 uses Blobs to de�ne the container
of data and a seperate concept - Operators to de�ne
the methods. Operators take Blobs as the input and the

Table 1. The comparison of Ca�e2 and Tensorflow in con-
cepts.

Tensor�ow Ca�e2
Data Unit Tensor Blob (a typed pointer

that can store any type
of C++ objects)

Operator Tensor Operator (protobuf object)
Network scope tf.session() Workspace

Graph tf.graph() Net (protobuf object)

output and do the computation inside. Operators are
actually realized as protobuf objects. In Ca�e2, Net is
the computation graph and de�nes the architecture of
the network as protobuf object. Workspace is where Net
and all the variables reside. Workspace is a similar con-
cept to Session in Tensor�ow. However, the di�erence
between them is that Workspace initializes themselves
the moment it is used. In contrast, Session needs to be
explicitly initialized before using it to run the graph.
�e relation of Ca�e2 and Tensor�ow is summarized in
Table 1.

3.1.2 Code flow. Tensor�ow code follow the �ow of
Graph de�nition ! Session (variables) initialization !
Session run. In contrast, Ca�e2 code is composed of
only two steps: Graph de�nition!Workspace run. We
compared the code wri�en in Tensor�ow and Ca�e2
for handwriting recognition task and found the code
structure quite similar [1][2], thus we consider two are
of the same level in the aspect of the easiness to write if
the user builds their own models. However, since Ca�e2
is using protobuf object in its design, it enables people
to de�ne the network only by editing the prototxt and
to train the model by running a simple script. Model
Zoo is a useful resource of pre-trained models. It makes
it easy to do �ne-tuning tasks on the well-known neu-
ral networks or to do inference tasks using pre-trained
models in Ca�e2. But Ca�e2 has its disadvantages. If
the network is complex and of big-scale like Residual
Network (ResNet) or GoogleNet, the prototxt �le be-
comes tedious and complicated. �us, we think it is
easier to write the code in Ca�e2 than Tensor�ow if
the machine learning task only utilizes the pre-trained
model and is not complicated. In
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3.2 Easiness to debug
First, Ca�e2 is much harder to install than Tensor�ow
for the large amount of the required dependencies. In
contrast, Tensor�ow installation can be done in only
one line of pip install command. Ca�e2’s complicated
installation procedure increases the debugging time and
may daunt users away from further uses.
However, because Ca�e2 uses protobuf objects to repre-
sent network architecture, it is easier to print out the
architecture and visualize the graph in place solely by
a net drawer() internal function. On the other hand,
to visualize the graph in Tensor�ow, one needs to use
Tensorboard. �ough Tensorboard is a powerful tool
supporting not only the visualization of the graph, but
also the monitor of the training process (automatic plot
of loss and metrics) by tf.summary module, learning its
usage and embedding them into the code takes some
time. It is especially hard for machine learning and Ten-
sor�ow beginners. �us, we reckon that it is easier for
people to pick up Ca�e 2 than Tensor�ow and to debug
for simple deep learning models. However, if the neural
network is complex and the project is research-oriented,
Tensor�ow supports more �exibility and Tensorboard
would show its advantages in debugging.

3.3 User experience
In order to evaluate how the two frameworks are easy
to be used, besides comparing their documentations, the
code �ows etc, we also conducted a user study by asking
eight users who have experience in deep learning to an-
swer some questions in the user experience survey. �e
survey basically has the contents including the time it
takes the users to install the framework etc. �e detailed
questions can be found in this Google �estionaire [1].
Although this is just a coarse user study as our sam-
ple size is small so there is a non-neglectable bias, the
�ndings are still interesting to present. First, 75% of the
users take less than twentyminutes to install Tensor�ow
on their own PC. However, on average it takes much
more time to install Ca�e2 both on local machine and
remote server. Second, the average score the users give
for the Tensor�ow documentation is 4.0 compared with
3.375 for the Ca�e2 documentation. However, since
Ca�e2 is a relatively new framework, we expect Ca�e2
to improve its documentation a�er gathering more user
feedbacks in the future. �ird, 75% users would prefer
to use Tensor�ow for building their CNN models and

Fig. 1. Operator functionality comparison.[6]

87.5% users prefer Tensor�ow for building their RNN
models.

4 MODELING CAPABILITY
Whether users can use the framework to create their
own instances is an important factor evaluating the ca-
pability of the framework. One of the big improvements
of Ca�e2 from Ca�e is its �ner granularity. As Figure 1
shows, previously network is constructed by the unit
layer and if users want to build their own customized
layers, they need to write functions illustrating how
gradient is computed. However, Ca�e2 replaces the con-
cepts of layers with operators. It increases the �exibility
of the networks and makes it easier to build customized
networks. Ca�e2 supports 400 operators and users can
de�ne their own operators by writing C++ code with
details of the usage, input, output, and how gradient is
passed. Tensor�ow has the same concept and support
customizing operators in the same way. Both Ca�e2
and Tensor�ow o�er default python wrappers and gen-
eral unit test functions for tests. Although there might
be some minor di�erences in how to the operators are
de�ned, overall, we consider in the terms of modeling
capability, Ca�e2 and Tensor�ow are of the same level.

5 PERFORMANCE EVALUATION
We compared the computation e�ciency betweenCa�e2
and Tensor�ow by doing training and inference tasks
using CIFAR-10 dataset. CIFAR-10 dataset is consisted
of 60,000 32x32 color images in 10 classes, with 6,000
images per class. We compared two deep learning ar-
chitectures of di�erent scales: VGG-style CNN model
with 6 layers and VGG-16 CNN with 16 layers. We used
NVidia Tesla K80 GPU for all the experiments. We re-
port the performance by comparing their execution time
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Table 2. The training time of using Ca�e2 and Tensorflow
to train small CNN model on CIFAR-10 dataset.

Tensor�ow Ca�e2
Graph construction 4.71s 1.89s
and initialization

Training 89.43s 55.71s
Inference 3.96s 0.40s

and memory space they took. We ensure that our imple-
mentations are correct by achieving the accuracies that
are claimed by the original papers using those models.

5.1 Speed
First, we used the simple VGG-style network of 6 layers
to test the performance. We conducted training for 10
epochs with batch size as 64 on 49,984 images. We took
the average of 10 runs and the result is displayed in
Table 2. �e inference was tested on 9,984 photos and
was conducted for 10 times as well. We took the average
and report the time in Table 2. We compare the time of
graph construction and initialization, training and in-
ference. For all three parts, Ca�e2 cost signi�cantly less
time than Tensor�ow. �e time Ca�e2 costs on training
is only 62% of the time Tensor�ow costs on trining and
the time Ca�e2 costs on inference is only 10% of the
time Tensor�ow costs on inference. However, we want
to exclude the possibility that the reason Tensor�ow
performs worse is that the model lacks of complexity
and Tensor�ow models will eventually be be�er than
Ca�e2 models when the neural network is very large.
�erefore, we evaluated the speed performance of the
two frameworks with increasing number of layers using
VGG11, VGG13, VGG16, VGG19 network architectures.
We plot the result in Figure2. We can see from the plot
that the training time is roughly linear to the number of
layers we have and it is explainable because the layers in
the network are by nature similar for the same VGG ar-
chitecture. And for the same model structure, the model
implemented using TensorFlow generally takes more
training time than that implemented using Ca�e2 de-
spite of layer number di�erence. �erefore, we expect
Ca�e2 to constantly perform be�er than Tensor�ow
with regard to speed no ma�er how large our model is.
We consider that the worse performance of Tensor�ow
might result from how tensor object is implemented
in Tensor�ow. We speculate tensor object might have

Fig. 2. Training Time for di�erent network architectures

Table 3. The memory space of using Ca�e2 and Tensorflow
to train small CNN model and do inference using the trained
model on CIFAR-10 dataset.

Tensor�ow Ca�e2
Training 3.960GB 2.424GB
Inference 3.405GB 1.854GB

bigger overhead and doing calculation with tensors is
time-consuming. To justify our speculation, we com-
puted the time of doing tf.argmax(), which is to compute
the class with the highest likelihood a�er the so�max
layer in the inference stage, and we compared it with
the time of using numpy.argmax() to do the same thing
in Ca�e2. �e time of doing tf.argmax() on tensors of
shape (10, 1) for 9984 times was 0.4066s. In contrast,
the time of doing numpy.argmax() on numpy array of
shape (10, 1) was 0.0075s. �e big gap supports our
hypothesis that doing calculation on tensors cost more
time. Although further experiments and comparison is
needed to fully justify our speculation, the slow compu-
tation speed of tensors is one of reasons for tensor�ow’s
longer training and testing time than Ca�e2.

5.2 Space
We recorded the space it took to do the training and
inference tasks using VGG-style 6 layer neural network
on the 49,984 training dataset and the 9,984 test dataset.
�e result is presented in Table 3. Ca�e2 took almost
half the space it took for Tensor�ow.
We also run the VGG7, VGG11, VGG13, VGG16, VGG19

models on GPU using the two frameworks. Generally,
we consider the framework to be be�er in terms of the
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Fig. 3. Memory used for di�erent network architectures

space complexity if it takes less memory. As we can
see from Figure3, Ca�e2 occupies less memory than
Tensor�ow regardless of the model complexity.

6 SCALABILITY
Scalability is the concept of running parallel jobs across
multiple machines in a distributed system. One way to
achieve the parallelism for faster training and testing in
deep learning tasks is to parallel the model by spli�ing
it into di�erent portions so that they can be trained on
di�erent devices in parallel.
According to the tensor�ow o�cial documentation [4],
the users may set up di�erent tasks on di�erent ma-
chine(including di�erent GPU devices on the same ma-
chine) and associate each task with one Tensor�ow
server. �e Tensor�ow cluster consists of all the tasks
for the execution of a TF graph. Inside each task, there
is a master that creates the session and a worker that
executes operations.
To enable the model parallelism on multiple machines,
tensor�ow uses the statement ”with tf.device(…)” to
specify which part of the model to be run on a particular
machine. In addition, it keeps a tf.train.ClusterSpec
which is shared among all the devices and a tf.train
.Server instance kept in each task to ensure the smooth
communication between the machines. However, there
is much information passing such as activation values
and gradient values between di�erent layers in the deep
neural network acrossing the distributed system if we
are consering the model parallelism. Another paral-
lelism technique is called data parallelism also named as
repliated training where the machines in the distributed
system train the same model with di�erent mini-batch

of the data. �e important issue is to ensure the shared
parameters are updated correctly among the machines.
Tensor�ow gives several possible approaches including
in-graph replication, between-graph replication, asyn-
chronous training an synchronous training.[4]
In Ca�e2, the scalability has been designed to be an im-
portant feature and it is well-known for he multi-GPU
acceleration. �e data parallelism is a built-in library
so users only need to write code to realize model paral-
lelism. In addition, Ca�e2 features built-in distributed
training using the NCCL multi-GPU communications
library which means that you can very quickly scale up
or down without refactoring your design, while Tensor-
�ow requires the users to de�ne their own. For example,
in Ca�e2, most of the built-in functions seamlessly tog-
gle between CPU-mode and GPU-mode depending on
where they are running.[2] In addition, Tensor�ow is
relatively harder to optimize in terms of the scalability
because of its granularity.
Ca�e2 claims that it achieves close to linear scaling with
Resnet-50 model training on up to 64 NVIDIA Tesla
P100 GPU accelerators (57x speedup on 64 GPUs vs. 1
GPU)[2]. However, the actual performance comparision
between the two frameworks in distributed system will
be included in future works as we currently do not have
enough GPU computing resources to run experiments
on.

7 HELP & SUPPORT
Although Ca�e2 and Tensor�ow have python and C++
APIs, Ca�e2 only supports python2, while Tensor�ow
supports both python2 and python3. Besides the lan-
guage they support, we compared the available resources
and the hardware they can be deployed on as follows.

7.1 Resource
Since Ca�e2 is a relatively new framework, the commu-
nity size is smaller than that of Tensor�ow and thus less
online code resources. According to the recent study at
the beginning ofMay of 2017 that summarises the frame-
works used by most of the popular open source deep
network repositories in Github, we can see there are
roughly ten times more Tensor�ow users than Ca�e2
users.[3] Also, according to the statistics of Stackover-
�ow posts related to the deep learning frameworks, Ten-
sorFlow is clearly leading the race for deep learning
framework adoption.
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Tensor�ow has many high-level wrappers like Keras,
TFLearn and TensorLayer which makes common things
easy to implement because coding static graphs is gen-
erally thought as not as intuitive and as coding dynamic
graphs. Ca�e2 has its advantages in the existing pre-
trained models available in Model Zoo and Ca� e2 team
provides the public translator tool to easily translate
Ca�e’s model to Ca�e2’s model, which is very helpful
and supportive because there are many ongoing projects
in industry using Ca�e models. However, translating
the Ca�e model to Ca�e2 model usually cost hours.
Overall, Tensor�ow is more supported and have more
online resources than Ca�e2.

7.2 Hardware support
Besides supporting generic CPU andNVIDIAGPU, Ca�e2
is o�cially claimed to be suited for the deployment on
mobile devices and work within the low-power con-
straints of such devices. For example, ca�e2 is used
by Facebook for fast style transfer on their mobile app.
It is said to ”harnesses the power of Adreno graphics
processing units and Hexagon digital signal processors
on�alcomm Inc.’s Snapdragon chips” to achieve this
goal. We did not implemented experiments to con�rm
Ca�e2’s actual performances, but Ca�e2 library’s pack-
age size is only 37.1MB, nearly one third of that of the
Tensor�ow library. Tensor�ow has recently published
Tensor�ow Lite to complement its shortage in mobile
and embedded devices. �e architecture of Tensor�ow
Lite is described in Figure 4 and since it is still under de-
velopment, currently it only supports limited operators.
Future work is required to do the comparison of both
in mobile devices.

8 CONCLUSION
We compare Ca�e2 and Tensor�ow in many aspects
and as a result we �nd neither of these two has an dom-
inating advantages over the other. �erefore, in pratice,
the choice between these two actually depends on the
speci�c user tasks and the user preferences. Overall, if
the user need to pursue speed and has limited space re-
stricted by the device, Ca�e2 is a be�er choice since our
experiments’ results revealed that Ca�e2 has a signi�-
cant advantage over Tensor�ow both in speed and space.
Nevertheless, Tensor�ow is still powerful and useful be-
cause there is a large number o�cial and third-party

Fig. 4. Tensorflow lite architecture[5]

resources, services, debugging tools, and a big support-
ive community that makes it easier to �nd reference
codes. �us, we think Tensor�ow is a be�er framework
for implementing a complicated or innovative networks
compared to Ca�e2.

A LIST OF WORK
Xiaoxue Zang: Set up experimental environment. Wrote
the Ca�e2 code for the experiments and run the experi-
ments. Compared the expressiveness, modeling capabil-
ity, and help & support.
Baige Liu: Implemented user study and conducted analy-
sis, Wrote the tensor�ow code. Compared the scalability,
similarity, supplemented additional materials to other
parts.
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