
Lecture 04.2: Polymorphic and existential types

So far, we have discussed extensions to the lambda calculus that enable us to describe relationships
between data (algebraic data types) as well as self-relations within code (fixpoints). In this lecture,
we introduced two new type extensions that focused on abstraction: how can we write code that is
generic over a particular data type? How can we define abstractions that work not over concrete
types like int or bool but any type?

1. Polymorphic types

One restriction of the lambda calculus formulated thus far is that it is difficult to enable code reuse
across types. In the simplest example, consider the identity function that takes an argument and
returns it:

λ (x : int) . x

This is a function that should work for any type τ that x could be, not just int. However, the
lambda calculus forces us to assign a concrete type to the argument, so creating a generic identity
function is impossible. We have to define a new function for each type:

λ (x : int) . x
λ (x : int → int) . x
λ (x : int → int → int) . x
. . .

And since there are infinitely many types, we would have to define an infinite number of identity
functions to be exhaustive. That won’t fly.

1.1. OCaml examples

We’ve already seen thatOCaml has a solution to this. For example, inOCaml, if Iwrite the function:

let id = fun x -> x

If you inspect the type of id, then Merlin will tell you 'a -> 'a. The 'a (read as “alpha”, i.e. α)
is a type variable—it means you can replace α with any type and the function will still be valid.
Here, we can call (id 3) and (id "hello").

Polymorphism occurs frequently in data structures, e.g. lists, stacks, heaps, trees, and so on can
all be defined irrespective of what type of element they contain. This idea is represented as type
parameters in OCaml, for example:

type 'a tree = Node of 'a tree * 'a * 'a tree | Leaf

let x : int list = [1; 2] in
let y : string list = ["a"; "b"] in
let z : int tree = Node (Leaf, 3, Node(Leaf, 2, Leaf))

1

Here, type 'a tree creates a new polymorphic type of a binary treewith any possible type of data
at the nodes. These data structures, and polymorphism more generally, work well in OCaml due
to heavy machinery for inferring polymorphic types and automatically generating code for using
polymorphic functions. In order to understand what’s actually going on under the hood, we need
a more fundamental theory of polymorphic types.

1.2. Theory basics

Whatwewant is to define a single function that is genericwith respect to the input type, i.e. it could
take any possible input type. This idea is called a type function—a piece of code that takes in a type
as input. Here’s an example in an extended version of our lambda calculus of the polymorphic
identity function:

ΛX . λ (y : X) . y

Here, the Λ (capital λ) means a type function that has a parameter X. This X is an example of a type
variable, in contrast to a term variable like the ones we’re used to. We will use the convention that
upper-case variables refer to type variables, while lower-case variables are term variables. Also
new in this example is the usage of type variables in type expressions, e.g. the type of y in the
inner function. To use a type function, we use type application to substitute type variables.

(ΛX . λ (y : X) . y) [int]
7→ [X → int] (λ (y : X) . y)
= λ (y : int) . y

Here, the type function is like a function generator—when we provide it a concrete type, we get
back an instance of the identity function for the requested type. This is the core idea of polymor-
phism1, that a function can operate on terms of many different types. Also, while we originally
developed the theory of variables and substitution for use with terms, observe the same ideas
apply equally to types. Neat!

The last issue to address is: what type should our polymorphic identity function have? We need
to introduce a new type written as t : ∀X . τ which means “for any possible type X, the term t has
type τ.” For example, this is the type of our identity function:

(ΛX . λ (y : X) . y) : ∀X . (X → X)

The type reads as “for all types X, this term is a function that takes an X and returns an X.”

1The etymology here is that “poly” means “many” and “morph” means “form”, so the property of dealing with or
having many forms.

2

1.3. Formal semantics

To formalize these semantics, first we will update our grammar:

Type τ ::= . . .
X type variable

∀X . τ polymorphic type

Term t ::= . . .
ΛX . t type function

t [τ] type application

Now, types are permitted to reference type variables, and we can introduce/eliminate terms with
polymorphic types. The statics are as follows:

Γ, X ` t : τ

Γ ` ΛX . t : ∀X . τ
(T-tfn)

Γ ` t : ∀X . τ1

Γ ` t [τ2] : [X → τ2] τ1
(T-tapp)

Just like typechecking functions in the simply typed lambda calculus required us to introduce the
typing context to map term variables to types, so do type functions require us to again extend the
semantics of the type context. Now, our type context can hold both mappings from term variables
to types as well as a set of live type variables, notated by Γ, X which says: “remember that X is a
valid type variable.”2

The (T-tfn) rule says that if a term t has a type τ knowing that X is a type variable, then that term
under a type function Λ has type ∀X . τ, which says “for any possible X, t has type τ.” Then (T-
tapp) says if t is a type function (i.e. it has a polymorphic type), then applying a type τ2 to the type
function means substituting the type variable X with the type argument τ2 in the body type τ1.

The dynamics are uninteresting, as all of the legwork happens at compile time (typechecking), not
runtime (interpretation). Nonetheless, we still need them in the language:3

ΛX . t val
(D-tfn)

t 7→ t′

t [τ] 7→ t′ [τ]
(D-tapp1)

(ΛX . t) [τ] 7→ [X → τ] t
(D-tapp2)

Like normal functions, type functions are values andwhen applied, cause a substitution to occur—
however here, the substitution is on a type variable, not a termvariable. Note that performing these
substitutions should never actually affect the runtime—there are no dynamic rules that change
depending on the type of a value. However, it is important still to perform the substitution, because
in order to prove progress and preservation, our terms need to be well-typed at every step of
evaluation.

2Our presentation of the statics here does not, in fact, rely on X existing the type context. The primary reason for
knowing X exists is to check for unbound type variables—for example, the term (λ (x : Y) . x) with no corresponding
type function should not typecheck, as Y is not bound. We could capture this with an auxiliary judgment τ type that
says “τ is a valid type” and would check for unbound type variables. This judgment would be applied any time the
user introduces a new type by hand, e.g. in function declaration.

3The dynamics presented here differ from the ones provided in the assignment—the ones for assignment 4 are simpler,
but also technically violate preservation.

3

2. Existential types

While polymorphism is a useful programming pattern to enable, there’s only but so many func-
tions that can be defined over every possible type. More frequently in software development, we
want to be abstract over some type but also have some knowledge about what we can do with that
type. Most statically-typed language have some notion of an interface that captures this idea: we
specify what things a type should be able to do, and then we have implementations that concretize
which types actually can implement the given interface.

2.1. OCaml examples

In OCaml this idea is presented in the form of modules. A module is basically like a struct (or a
product type)—it groups together a bunch of terms under a single name. For example, we can
create a module that implements a counter:

module IntCounter = struct
type t = int

let make (n : int) : t = n
let incr (ctr : t) (n : int) : t = ctr + n
let get (ctr : t) : int = ctr

end

Thismodule follows the convention ofmanyOCamlmodules where the type t represents themain
type of the module, in this case the counter. We can then use the counter module as follows:

let ctr : IntCounter.t = IntCounter.make 3 in
let ctr : IntCounter.t = IntCounter.incr ctr 5 in
assert((IntCounter.get ctr) = 8);
assert(ctr = 8)

This works as we expect, although there’s one unsightly detail: we’re allowed to directly inspect
the value of the ctr variable instead of just going through the IntCounter implementation, which
stinks of bad design. More generally, the question is: how dowewrite Counter code that is generic
with respect to the implementation of the counter? For example, I could create another counter
implementation using records (product types with labels, or basically a C struct):

module RecordCounter = struct
type t = { x : int }

let make (n : int) : t = {x = n}
let incr (ctr : t) (n : int) : t = {x = ctr.x + n}
let get (ctr : t) : int = ctr.x

end

Essentially, we need some way of specifying an interface for these modules, which can we do with
the module type keyword:

module type Counter = sig

4

type t

val make : int -> t
val incr : t -> int -> t
val get : t -> int

end

This declares what’s called a module signature, or a specification of what values/types a module
should contain. This signature says that a Countermodule should contain some type t as well as
three functions of various types. We can express that a module adheres to a signature like this:

module IntCounter : Counter = struct ... end

After specifying that IntCounter adheres to the Counter interface, our previous example usage is
broken now, specifically when we run assert(ctr = 8). We will get the error:

Error: This expression has type IntCounter.t
but an expression was expected of type int

Excellent! This says that now, when we use the IntCounter implementation of the Counter in-
terface, we can’t assume that the type t is an integer, which means we can no longer bypass the
interface. The next step would be to erase any mention of the implementation—we should be able
to write our code without knowing that IntCounter was the implementation at all. This relies on
another OCaml mechanism called functors that we won’t discuss in this class, but you can read
about it in Real World OCaml if you’re interested.

2.2. Theory basics

As with polymorphism, OCaml modules have a lot of language machinery in place to make them
work smoothly. We want to distill down to its essence the kind of abstraction occurring here with
separating interfaces from implementation. On a high level, the process we want to capture is
that of type erasure—we want to take a concrete implementation of something like a counter and
then erase the type of the counter such that anything using a given counter implementation cannot
violate the abstraction boundary.

First, we need to define a process for creating (introducing) an implementation of some interface,
and second, we need a way to use that interface. Here’s how we’re going to define the same
IntCounter implementation in our lambda calculus:

{int, (((λ (n : int) . n), (λ (c : int) . λ (n : int) . c + n)), (λ (c : int) . c))}
as ∃X . (((int → X)× (X → int → X))× (X → int))

This syntax describes the packing of a “package”, or a termwith one of its types erased. Specifically,
a package has three components: the implementation, the interface, and the abstracted type.

1. Here, the implementation is the second term in the curly braces, concretely a set of functions
to create and manipulate a counter.

2. The interface is the type after the as keyword that sayswhat the implementation’s type ought
to be after abstracting over its types, which in this case is the implementation’s expected type

5

https://realworldocaml.org/v1/en/html/functors.html

except with a few int replacedwith a variable X. Note that here the interface is prefixedwith
∃X which we’ll explain in a moment.

3. Lastly, the type being abstracted, the thing replaced with X, is written as the first element in
the curly braces.

The dual to pack is unpack, which enables a client to open up a package and use its methods. Its
syntax looks like this (assuming we have let bindings):

unpack {X, p} = ({int, (. . .)} as ∃X) in
let c : X = p.L.L 3 in
let c : X = p.L.R c 5 in
p.R c

Here, when we open up a package, we get access to two things: a type variable X representing
the abstracted type and a term p representing the packaged term. Recall that t.L means get the left
element of the pair t, and R for right. So p.L.L means get the “make” function, p.L.R is “incr”, and
p.R is “get”.

In this example, even though the counter is concretely implemented as an int, our packing/un-
packing semantics enable us to treat that counter type as a black box type variable X, which forces
the client to only use the methods that “understand” the type variable, i.e. those in the package.
For example, we could not compute c + 1 as that would not typecheck (since c : X, not c : int).
Together, these two constructs enable our language to separate complex interfaces from their im-
plementations, and also allows clients to write code that is abstract with respect to the choice of
implementation.

2.3. Formal semantics

Again, we will update our grammar:

Type τ ::= . . .
∃X . τ existential type

Term t ::= . . .
{τ1, t} as ∃X . τ2 type pack

unpack {X, x} = t1 in t2 type unpack

We introduce a new type ∃X . τ which reads as “there exists an X that satisfies the type τ,” con-
trasting with the previous extension which claimed that a type ∀X . τ was valid for all possible
values of X. The idea here is that the existence claim allows us to define code that says “I assume
that I have some X that satisfies a particular interface. I don’t know what that X is right now, but
if you give me an implementation, then I will use it.” As you saw above, existential types are a
little bit harder to understand and work with than polymorphic types, so we will discuss the static
semantics at length.

Γ ` t : [X → τ1] τ2

Γ ` {τ1, t} as τ2 : ∃X . τ2
(T-pack)

Γ ` t1 : ∃X . τ1 Γ, X, x : τ1 ` t2 : τ2

Γ ` unpack {X, x} = t1 in t2 : τ2
(T-unpack)

6

In (T-pack), when we create a package, that package explicitly specifies its interface (τ2) as well as
its abstracted type (τ1). The typechecker then needs to verify the claim that t fulfills the interface
collectively specified by τ1 and τ2. Let’s say that t actually has the concrete type τ3. For example,
take the simple package:

{int, λ (y : int) . y} as ∃X . (int → X)

Here, τ1 = int, τ2 = int → X, and τ3 = int → int. Note that τ3 is not explicitly specified, but
deducible from the typechecking process on the packaged term (λ (y : int) . y). Then to verify that
the term fulfills its specified interface, we can check this by replacing the existential type variable
(X) with the abstracted type (τ1 = int) in the interface (τ2 = int → X) and comparing against the
concrete type (τ3 = int → int), i.e. checking [X → int] (int → X) = int → int. Hence, in the
general case, typechecking a pack means checking if t has the type [X → τ1] τ2. The returned type
of a pack should be the provided interface if it matches the implementation.

In (T-unpack), the rule is more verbose but the logic is more straightforward. To unpack a package
t1, first we need to verify that t1 actually is a package, i.e. that it has an existential type ∃X . τ1.
Then, we need to typecheck the body of the term, i.e. the t2 we’re unpacking the package into.
Specifically, the body needs access to both the type variable X representing the abstracted type
and the term variable x representing the implementation of the package. The package should have
type τ1 from the existential, so we insert both X and x : τ1 into the type context and typecheck the
body t2, returning the body’s type τ2 as the type for the full expression. For example, take the term:

unpack {X, x} = {int, λ (y : int) . y} as ∃X . (int → X) in x 0

Here t1 = ({int, λ (y : int) . y} as ∃X . (int → X)) and t2 = (x 0). From (T-pack) we know t1 :
∃X . int → X, so we then typecheck the body t2 = (x 0)with the typing context (X, x : int → X).
From this, we deduce that (x 0) has type X, which is the type of the whole term.

Lastly, we need to define dynamics, which as before are uninteresting:

{τ1, t} as τ2 val
(D-pack)

t1 7→ t′1
unpack {X, x} = t1 in t2 7→ unpack {X, x} = t′1 in t2

(D-unpack1)

unpack {X, x} = {τ1, t1} as τ2 in t2 7→ [X → τ1, x → t1] t2
(D-unpack2)

Packages are valueswe can pass around, andwhenwe choose to unpack a package in (D-unpack2),
we substitute both the packaged type τ1 and the packaged term t1 into the body t2. And that’s all!
Now we’ve defined a formal semantics for both polymorphic and existential types, successfully
bringing first-order logic to our type system.

7

